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1 Introduction

How do people interpret and react to new information? This question is fundamen-

tal to economic decision-making: investors adjust their beliefs about the quality of

a stock based on past performance, managers learn from candidate interviews be-

fore making hiring decisions, and professional forecasters make economic predictions

based on releases of new data. Standard models assume that people have an accurate

representation of the signal-generating process and use Bayes’ rule to draw inference.

However, a large literature in economics, finance, and psychology documents system-

atic departures from these assumptions.

Laboratory experiments have been used extensively to study how people learn

and update beliefs. In these studies, participants are told the information envi-

ronment, observe a signal, and then report their belief about the realization of an

unobserved state. The components of the information environment—the state space,

prior, and signal distribution—are transparent and easy to exogenously manipulate.

It is also straightforward to calculate the Bayesian posterior as a benchmark. Such

experiments generally find that people deviate from this benchmark in a manner that

suggests underreaction to information (Benjamin 2019).1 Surveys and forecasts by

households or industry professionals have also been used to study how people react to

information, primarily in financial markets. Although it is not possible to calculate a

Bayesian benchmark using such field data, the predictability of forecast errors can be

used to identify deviations from rational expectations and determine the direction of

such deviations. This literature mostly finds evidence for overreaction to information

(Bordalo, Gennaioli, and Shleifer 2022).2

In this paper, we explore how properties of the information environment impact

whether under- or overreaction emerges. We start by modeling belief-updating as

a two-stage process where people first simplify the information structure and then

form beliefs subject to cognitive imprecision. In the first stage, attention and memory

constraints lead the agent to simplify complex information by focusing on a subset

of states that are representative given the observed signal. In the second stage,

cognitive imprecision leads the agent to form beliefs using a noisy representation of

the simplified information structure. This model generates comparative static pre-

dictions about how the level of over- or underreaction varies with the information

environment. Specifically, we show analytically that it predicts more overreaction as

the state space becomes more complex, the signal is noisier, and the prior becomes

concentrated on less representative states; it predicts more underreaction when the

state space is simpler, the signal becomes more precise, and the prior becomes con-

1Benjamin (2019) writes: “The experimental evidence on inference taken as a whole suggests
that even in small samples, people generally underinfer rather than overinfer.”

2Bordalo et al. (2022) write: “The expectations of professional forecasters, corporate managers,
consumers, and investors appear to be systematically biased in the direction of overreaction to
news.”
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centrated on more representative states. Pre-registered experiments with N = 2, 210

participants provide direct support for these predictions.

To test the proposed cognitive mechanism directly, we also measure and experi-

mentally manipulate attention in our setting. We find that people overwhelmingly

channel their attention towards representative states and, consistent with the frame-

work, taxing cognitive resources exacerbates overreaction. We then use the experi-

mental data to show that while cognitive imprecision alone can generate the observed

belief-updating in simple environments, the mechanism quickly loses explanatory

power as the environment becomes more complex. On the other hand, our two-stage

model is highly complete in capturing the observed variation in belief-updating across

all information environments (Fudenberg, Kleinberg, Liang, and Mullainathan 2022).

Moreover, combining both stages of the model does not make the framework too

flexible in its capacity to be falsified—it remains highly restrictive (Fudenberg, Gao,

and Liang 2023). Taken together, our model and empirical results help rationalize

the discrepancy between the predominant observation of underreaction in laboratory

studies—which typically use a simple state space, a relatively precise signal, and a

uniform prior—and overreaction in financial market studies—which feature a more

complex environment and noisier signals.

To illustrate the two-stage model, consider the following example. An agent is

deciding whether to invest in an asset that is either “good” or “bad” (the state) with

equal probability (the prior). A good (bad) asset has a 70 (30) percent chance of

increasing in price and a 30 (70) percent chance of decreasing in price. The agent

observes a price increase (the signal). How should she update her belief? According

to Bayes’ rule, she should increase her belief that the asset is good from 50 to 70

percent. However, research from the lab suggests that the agent will underreact and

increase her belief to less than 70 percent. Now suppose that there are five potential

states—good and bad, as before, and three intermediate states with a 40, 50 or 60

percent chance of a price increase, respectively. Does the increased complexity of

the information environment impact whether the agent over- or underreacts? What

other properties of the information environment impact whether the agent exhibits

one bias versus the other?

To answer these questions, we first turn to the literature on how people respond

to complexity. Cognitive research shows that attention and working memory have

a fixed capacity, limiting the number of objects in consideration at any given time

(Oberauer, Farrell, Jarrold, and Lewandowsky 2016; Luck and Vogel 1997; Loewen-

stein and Wojtowicz 2023).3 In the case of belief formation, this implies that people

making likelihood judgments will be limited in the number of potential states that

they can simultaneously consider. In our model, the first stage—which we term

3For example, in the case of visual stimuli, participants can attend to only three to four items
at any given time (Bays, Gorgoraptis, Wee, Marshall, and Husain 2011)
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the editing stage—determines which elements of the information structure are at-

tended to and to what extent. We propose that, when confronted with a complex

learning environment, an agent’s attention will be channeled toward ‘representative’

states, i.e., states that generate the observed signal realization with the highest prob-

ability (Kahneman and Tversky 1972; Bordalo, Gennaioli, Porta, and Shleifer 2019;

Bordalo, Coffman, Gennaioli, and Shleifer 2016). Upon observing a signal, this rep-

resentativeness heuristic distorts the agent’s posterior belief by overweighting states

whose Bayesian posterior increases relative to the prior and underweighting states

whose Bayesian posterior decreases relative to the prior. When the signal has a

good news/bad news structure (Milgrom 1981) commonly used in the literature, this

results in an overweighting of extreme states.

We then turn to how the ‘edited’ information structure is processed when form-

ing subjective beliefs. A large body of work in cognitive psychology shows that

an agent’s response to information can be modeled using a noisy representation of

the decision parameters (Green, Swets et al. 1966; Thurstone 1927; Woodford 2020;

Gabaix 2019).4 In the second stage of our model, termed the evaluation stage, the

agent applies Bayes’ rule to the (potentially) simplified information structure, but

with cognitive imprecision. Specifically, the agent processes the information structure

as if she is facing a signal extraction problem, treating the parameters as unbiased

noisy signals of the true underlying values. Greater cognitive noise decreases the

agent’s sensitivity to changes in the parameters and biases her posterior belief to-

ward a cognitive default. In simple binary state environments with a uniform prior,

this leads to underreaction.

Returning to the example above, our model predicts that the agent underreacts

to the price increase when the asset is simple (i.e., either good or bad), but overreacts

when the asset is more complex. In both cases, the good state is representative of

a price increase. When the asset is simple, there is little need to further simplify

the information environment and the representativeness heuristic has limited bite.

In turn, the impact of cognitive noise dominates: the agent does not fully internalize

the informativeness of the price increase and underreacts to it as a result. On the

other hand, when the asset is complex, channeling attention to the representative

good state diverts attention from the four other states, which leads her to overweight

the former at the expense of underweighting the latter. This results in overreaction.5

Beyond complexity, our model also predicts how other properties of the infor-

mation environment impact belief-updating. Logic similar to the above yields a

4A more recent literature in economics applies the principles of such noisy cognition to explain
anomalies in choice under uncertainty (Khaw, Li, and Woodford 2022; Frydman and Jin 2022; Enke
and Graeber 2023) and forecasting (Azeredo da Silveira and Woodford 2019; Enke and Graeber
2023; Augenblick, Lazarus, and Thaler 2022).

5This prediction is stark: simulations show that even going from two to three states leads an
agent to switch from underreaction to overreaction for a broad range of parameter values.
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prediction that overreaction will decrease with signal informativeness. Specifically,

the agent will overreact most (underreact least) to a noisy signal and overreact least

(underreact most) to a precise signal. For example, in the complex asset example,

our model predicts more overreaction when the good (bad) state generates a price in-

crease with 60 (40) percent chance, compared to a more precise signal that generates

a price increase with an 80 (20) percent chance.6

The shape of the prior also influences the magnitude of reaction. Our model

predicts that overreaction increases as the prior becomes more concentrated on less

representative states. In the case of an asymmetric prior, our model predicts un-

derreaction to confirmatory signal realizations—those that increase the likelihood of

states that are ‘expected’ ex-ante—and overreaction to disconfirmatory, ‘surprising’

signal realizations. For example, in the simple asset example, suppose there is an 80%

chance of the good state and a 20% chance of the bad state. Then a price increase

is ‘expected’ and a price decrease is ‘surprising’; our model predicts underreaction to

the former and overreaction to the latter. Notably, in the case of a confirmatory sig-

nal realization, our model also predicts that cognitive imprecision can lead agents to

update in the opposite direction of the Bayesian posterior (e.g., placing less than an

80% chance on the good state after a price increase). Such wrong direction updating

is not predicted for disconfirmatory realizations or under a symmetric prior.

Each of these predictions stem from how the interaction between representative-

ness and cognitive imprecision impact the weight an agent places on extreme ver-

sus moderate states relative to the Bayesian posterior. In environments where the

Bayesian posterior places relatively less weight on the extreme states—either because

there are more moderate states under consideration, the prior is more concentrated

on these moderate states, a less informative signal leads to less movement from the

prior, or the signal realization is surprising—representativeness dominates cognitive

noise and overreaction is the predominant phenomenon. In contrast, in environments

where the Bayesian posterior places relatively more weight on the extreme states—

either because there are fewer moderate states under consideration, the prior places

more weight on extreme states, a more informative signal leads to more movement

from the prior, or the signal is consistent with the asymmetric prior—cognitive noise

dominates and agents either overreact less or even underreact.

We test each of these predictions in a series of pre-registered experiments. We

adopt the classic ‘bookbag-and-poker-chip’ design originally used in Edwards (1968)

and employed extensively in the learning literature. In the standard paradigm, a

6Both Edwards (1968) and Benjamin (2019) show that underreaction in simple two-state set-
tings decreases as the signal becomes noisier, even flipping to overreaction for very noisy signals.
Augenblick et al. (2022) show that this relationship is consistent with a model of cognitive noise.
Our model shows that the same pattern can be generated by representativeness, such that the de-
gree of overreaction to noisy signals increases with the complexity of the state space—a prediction
that is not captured by a model of cognitive noise alone.
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set number of bags are filled with different color balls in known proportions. For

example, Bag 1 contains 70 red balls and 30 blue balls while Bag 2 contains 30 red

balls and 70 blue balls. One bag is chosen at random with known probability. A

ball is drawn from it and shown to the participant. The participant then reports her

belief about the likelihood that each bag was selected. Parameters in the design have

a straightforward correspondence to our model: the bags represent the states, the

probability that each bag is selected corresponds to the prior, and the proportion of

balls in each bag represents the signal distribution. Our experiments have three main

sources of treatment variation. First, we manipulate complexity by varying the state

space from the standard 2-state setting up to 11 states. Second, we vary the signal

informativeness. Finally, we vary the concentration and symmetry of the prior.

Increasing complexity has a striking effect on belief-updating. Focusing on uni-

form prior environments, we first replicate the standard finding that people generally

underreact to information in simple 2-state environments. This result qualitatively

flips when we add even a single additional state: the majority of participants overre-

act in 3-state environments, and do so across all signal distributions we consider. The

level of overreaction increases monotonically with the complexity of the state space,

such that the largest fraction of participants overreact in the 11-state environment.

Note that these results are not consistent with people simply being insensitive to

changes in the information environment; ‘representativeness’ is key because it high-

lights exactly which states receive more weight.7 We also document the predicted

relationship between signal informativeness and belief-updating. The decreasing re-

lationship between level of overreaction and signal diagnosticity is observed across

all complexities. For example, in the 3-state case, participants overreact the most to

relatively uninformative signals and the least to relatively informative signals.

Consistent with the model’s prediction, we document that overreaction increases

as the prior becomes more concentrated on a moderate state; the most (least) over-

reaction is observed when the moderate state has greater (smaller) prior likelihood

relative to the extreme states. Turning to an asymmetric prior, we document the

hypothesized underreaction to confirmatory ‘expected’ signal realizations and over-

reaction to disconfirmatory surprising signal realizations. Even in simple two-state

environments where people generally underreact when the prior is symmetric, we

find evidence for significant overreaction when the prior is asymmetric—driven by

overreaction to disconfirmatory realizations. Moreover, consistent with our model’s

prediction, we observe nearly three times as many wrong direction updates to con-

firmatory realizations compared to disconfirmatory realizations.

Our model has two key parameters which capture the level of representativeness

7Comparing the reported posteriors to the Bayesian benchmarks allows us to rule out the
possibility that people are insensitive to changes in the information environment and that the
shift from under- to overreaction is driven by a shifting Bayesian benchmark.
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and cognitive imprecision. We use the experimental data to structurally estimate

these parameters. At the aggregate level, both parameter estimates differ from the

Bayesian benchmark and are in line with values found in prior work. At the indi-

vidual level, we find that the vast majority of participants exhibit both significant

representativeness and cognitive imprecision; small minorities exhibit either a single

mechanism or neither one. Interestingly, the two parameter estimates are signifi-

cantly correlated, suggesting that individual-level limits in cognitive resources lead

to both representativeness and cognitive imprecision.

Next, we explore the relationship between bottom-up attention and belief-updating

to directly test the proposed attentional mechanism in the editing stage. Specifically,

we incorporate a paradigm commonly used in cognitive science to measure and ma-

nipulate attention (Payne, Bettman, and Johnson 1988) into our baseline design.

Results in this treatment show that, upon observing the signal, participants’ atten-

tion is overwhelmingly drawn to the most ‘representative’ state. We use the same

paradigm to study how limiting cognitive resources impacts belief-updating. Our

proposed mechanism predicts that such limits will exacerbate representativeness in

complex environments and lead to greater overreaction. The results support this

hypothesis: fixing the information environment, we observe a higher level of over-

reaction when cognitive resources are more taxed. Indeed, structural estimation

shows that representativeness becomes more pronounced while cognitive imprecision

remains the same.

Finally, we use the experimental data to evaluate the model’s completeness in

capturing predictable variation in belief-updating across information environments.

Using the method of Fudenberg et al. (2022), we show that cognitive imprecision on

its own is sufficient to explain belief-updating in simple 2-state environments, but

precipitously loses explanatory power when complexity increases to 3 or more states

(dropping from capturing 100% to 36% of the explainable variation in the data).

Representativeness on its own also has low explanatory power. In contrast, our two-

stage model has high explanatory power across simple and complex environments,

notably capturing 92% of the explainable variation in the latter. Critically, this

shows that the two processes are cognitive complements : their interaction plays a

critical role in predicting belief-updating. Moreover, the two-stage model is nearly

as restrictive as both the Bayesian benchmark and the cognitive-noise-only model in

that it does not explain randomly-generated ‘synthetic’ belief data (Fudenberg et al.

2023). This shows that the high explanatory power for real belief data does not come

at the expense of being flexible enough to explain any data.

Our findings contribute to a large literature on under- and overreaction in belief-

updating. Section 5 provides an in-depth review of this work, and discusses how

our results can help rationalize some of the disparate findings. Notably, our model

predicts underreaction in simple settings such as the two-state experiments reviewed
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in Benjamin (2019), and overreaction in more complex environments such as the

financial markets reviewed in Bordalo et al. (2022), where investors and forecasters

need to consider a multitude of potential states (e.g., forming expectations about

future returns of a stock or forecasting macroeconomic variables). We also discuss

how our findings relate to the evidence on how investor behavior (prices) responds

to news in financial markets (Daniel, Hirshleifer, and Subrahmanyam 1998; Barberis,

Shleifer, and Vishny 1998; Klibanoff, Lamont, and Wizman 1998).

The paper contributes to the literature exploring the cognitive foundations of eco-

nomic decision-making. Research on the role of complexity in judgment and decision-

making argues that people are averse to complexity (Oprea 2020), and as a result,

adopt simpler mental models (Kendall and Oprea 2021; Molavi 2022), form simpler

hypotheses (Bordalo, Conlon, Gennaioli, Kwon, and Shleifer 2023), and use heuris-

tics to reduce the mental cost of judgments and decisions (Banovetz and Oprea 2020;

Oprea 2022). Another strand of research models an agent as optimally responding

to a stimulus given a noisy representation of the decision problem. These models of

noisy cognition have been used to explain phenomena such as small-stakes risk aver-

sion (Khaw, Li, and Woodford 2021), state-dependent risk attitudes (Khaw et al.

2022), and myopia in time preferences (Gabaix and Laibson 2017). Awareness of this

noise is correlated with the extent of people’s insensitivity to the parameters of the

decision problem (Enke and Graeber 2023). Our theoretical framework is linked to

both lines of work: the proposed two-stage model of belief-updating incorporates a

heuristic response to complexity in the editing stage and cognitive imprecision in the

evaluation stage.

The rest of the paper proceeds as follows. Section 2 outlines the theoretical

framework and its predictions. Section 3 presents the experimental paradigm, em-

pirical findings, and structural estimation. Section 4 quantifies model completeness

and restrictiveness. Section 5 reviews the prior literature and discusses our findings.

Section 6 concludes.

2 Theoretical Framework

In this section, we formalize a two-stage model of belief formation. The first ‘editing’

stage guides what aspects of the information structure the agent attends to and

to what extent. The second ‘evaluation’ stage determines how this edited input

is processed to form a subjective posterior belief after observing the signal. We

then define a general measure of over- and underreaction and use our model to

derive a series of comparative static predictions on how the extent of under- or

overreaction varies with properties of the information environment. We focus on four

key properties: the complexity of the state space, the signal diagnosticity, and the

concentration and symmetry of the prior.

2.1 Model
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2.1.1 Information Environment

A state ω is drawn from finite state space Ω ≡ {ω1, ..., ωN} ⊂ [0, 1] with N distinct

states in ascending order, ω1 < ... < ωN , and generic element ωi. The state is dis-

tributed according to prior p0 ∈ ∆(Ω), which we assume to have full support on Ω. A

binary signal s with support S ≡ {s1, s2} and generic realization si provides informa-

tion about the state. In state ωi, the signal is distributed according to Pr(s2|ωi) = ωi

and Pr(s1|ωi) = 1− ωi. For example, when Ω = {0.3, 0.5, 0.7}, signal realization s2

occurs with probability 0.3 in state ω1, probability 0.5 in state ω2, and probability

0.7 in state ω3. This signal has a good news/bad news structure (Milgrom 1981): the

probability of realization s2 is increasing in the state, so observing s2 is good news

about the state and observing s1 is bad news. Since the signal distribution is pinned

down by the state space, we refer to Ω as the information structure and (Ω, p0) as

the information environment.

We define several properties of information environments. An information struc-

ture Ω′ is more dispersed than Ω if the minimum and maximum states in Ω′ are

weakly smaller and larger, respectively; i.e., ω′
1 ≤ ω1 and ω′

N ≥ ωN . An information

structure Ω′ is more complex than Ω if Ω′ contains weakly more states than Ω; i.e.,

|Ω′| ≥ |Ω|. An information structure is symmetric if whenever ωi ∈ Ω, then its

reflection 1 − ωi ∈ Ω. A prior p0 is symmetric if for any ωi ∈ Ω, ωi and 1 − ωi

have the same mass; i.e., p0(ωi) = p0(1 − ωi). Note that prior symmetry implies

information structure symmetry but not vice versa. Related to individual states,

state ωj is more interior than state ωi if it is closer to 1/2, |ωj − 1
2
| ≤ |ωi − 1

2
|. The

diagnosticity of the signal in state ωi is the probability of the more likely signal real-

ization, di ≡ max{ωi, 1− ωi}. Within the class of symmetric information structures,

the set of diagnosticities is sufficient for the information structure. For example, in

Ω = {0.3, 0.5, 0.7}, the set of diagnosticities {0.5, 0.7} pin down Ω.8

Given a prior and an information structure, by Bayes’ rule, the objective posterior

probability of state ωi following signal realization s2 is

p(ωi|s2) ≡
ωip0(ωi)∑

ωj∈Ω ωjp0(ωj)
, (1)

and analogously following s1, p(ωi|s1) ≡ (1 − ωi)p0(ωi)/
∑

ωj∈Ω(1 − ωj)p0(ωj). Let

p(si) = (p(ω1|si), ..., p(ωN |si)) denote this objective posterior. The objective posterior
expected state following signal realization si is

E(ω|si) ≡
∑
ωj∈Ω

ωjp(ωj|si). (2)

8Our model can be extended to asymmetric information structures with more involved notation
and definitions. Our model’s predictions introduced in Section 2.2 remain valid in these asymmetric
environments.
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This information structure mirrors the experimental environment in Section 3.

We focus on a binary signal space with a good news/bad news structure, as this is

the set-up typically used in both laboratory and financial studies (e.g., price increase

versus decrease). Our belief-updating model is straightforward to extend to more

general signal spaces and information structures.

2.1.2 Two-Stage Updating Process

We next model how an agent forms her subjective posterior belief, denoted by p̂(si) =

(p̂(ω1|si), ..., p̂(ωN |si)) following signal realization si. First, attention and working

memory constraints lead her to edit (simplify) the information structure using the

representativeness heuristic. Second, cognitive imprecision leads her to use a noisy

representation of the information structure to evaluate the information (update her

belief).

Editing. According to Tversky and Kahneman (1983), limits on cognitive resources

lead people to overweight ‘representative’ objects when making judgments. For ex-

ample, when predicting the hair color of someone from Ireland, people overweight the

state of the world in which the person has red hair, as red hair is representative of

someone from Ireland. Similarly, people overweight the state in which someone from

Florida is a retiree, as retirees are representative of Floridians (Bordalo et al. 2016).

In the information environment outlined above, Tversky and Kahneman (1983)’s

conjecture would classify a state as representative of a signal realization if the rela-

tive frequency of the state following this signal realization is much higher than the

frequency of the state in a reference distribution. We argue that agents use the

representativeness heuristic in response to complexity as a means of simplifying the

information structure, which leads to an overweighting of representative states.9

Following Bordalo et al. (2019), we define the representativeness of state ωi follow-

ing signal realization sj as the posterior frequency of ωi relative to the prior frequency,

R(ωi, sj) ≡ p(ωi|sj)
p0(ωi)

. A state is more representative if its objective likelihood increases

more after observing sj relative to the prior belief before the signal arrived (i.e., the

reference distribution is the prior). In the class of information structures we consider,

ω1 is the most representative state following signal realization s1 and ωN is the most

representative state following realization s2.

When updating beliefs, the agent first simplifies the information structure by

channeling more attention bottom-up to more representative states, which inflates

their weights.10 We use the representativeness-based discounting weighting func-

9Payne, Bettman, and Johnson (1993) reviews the evidence on heuristics as a simplification tool
in the face of complex environments.

10This is related to the argument of Gennaioli and Shleifer (2010); Bordalo, Coffman, Gennaioli,
Schwerter, and Shleifer (2021) that the most representative states are easier to recall and are
therefore overweighted in judgment. See also Kahneman (2003) for discussion on the interaction
between selective attention and recall, and how this relates to heuristics in judgement.
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tion defined in Bordalo et al. (2016) to parameterize how representativeness distorts

belief-updating. Specifically, the agent’s edited posterior belief about state ωi after

observing signal realization sj is distorted proportionally to the representativeness

R(ωi, sj) of ωi,

pR(ωi|sj) ≡ p(ωi|sj)
R(ωi, sj)

θ

Z(sj)
, (3)

where p(ωi|sj) is the objective posterior. Parameter θ ≥ 0 captures the severity of

the representativeness distortion: a higher θ corresponds to more distortion. The

term

Z(sj) ≡
∑

ωi∈Ω Pr(sj|ωi)
θ+1p0(ωi)

(
∑

ωi∈Ω Pr(sj|ωi)p0(ωi))θ+1
(4)

is a normalization factor that ensures the edited posterior sums to one across states.

Let pR(si) ≡ (pR(ω1|si), ..., pR(ωN |si)) denote the edited posterior belief following

signal realization si. When θ = 0, the edited posterior corresponds to the objective

posterior. When θ > 0, the edited posterior overweights more representative states

and underweights less representative states.

The distortion captured in Eq. (3) is equivalent to an agent forming her posterior

using Bayes’ rule with respect to misspecified information structure

P̂ r(sj|ωi) ≡
Pr(sj|ωi)

θ+1

Pr(s1|ωi)θ+1 + Pr(s2|ωi)θ+1
. (5)

In the class of information environments we consider, Eq. (5) simplifies to P̂ r(s2|ωi) =

ωθ+1
i /((1 − ωi)

θ+1 + ωθ+1
i ) and analogously for s1. This misspecified information

structure overweights the probability of the more likely signal realization in each state

and underweights the probability of the less likely signal realization, relative to the

correctly-specified information structure. Intuitively, it corresponds to “counting” the

signal realization θ + 1 times, and has often been used in the theoretical literature

to model overreaction (Bohren and Hauser 2021; Angrisani, Guarino, Jehiel, and

Kitagawa 2020). For example, consider Ω = {0.3, 0.7} so that the probability of s2

is 0.3 in state ω1 and 0.7 in state ω2. If the agent has representativeness parameter

θ = 1, then she updates beliefs as if the probability of s2 is approximately 0.16 in

state ω1 and 0.84 in state ω2. Following realization sj, her posterior belief is as-if she

had observed two realizations sj.

Discussion. We refer to the first stage as editing because the agent responds to

complexity in the information structure by focusing more on a subset of states while

increasingly neglecting the other states. To see the intuition, consider an investor

who forms beliefs about a tech company that recently entered the public market.

The state space includes the possibility that the firm is a zombie (non-viable and
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set to crash), a unicorn (e.g., Google, Facebook), as well as a slew of intermediate

possibilities. Upon observing a price increase (the signal realization), a boundedly

rational investor does not have the cognitive capacity to consider all of the states

when forming beliefs. Because unicorns are ‘representative’ of a price increase, the

investor overweights the possibility of a unicorn, and the less extreme potential firm

states are ‘edited’ out. Note that this does not imply that the investor is completely

unaware of the intermediate firm states; these states just receive less weight compared

to the Bayesian benchmark.

Evaluation. A large literature in cognitive psychology has shown that the variation

in people’s judgments and decisions can be explained by cognitive imprecision (Green

et al. 1966; Thurstone 1927). Specifically, rather than using the parameters of the

information environment directly, an agent treats them as if they are unbiased signals

of the true underlying values. This generates a noisy representation of the information

environment and leads to variation in actions. Notably, noisy cognition leads to

reduced sensitivity to the parameters of any particular decision problem. Motivated

by these insights, we argue that agents use a noisy representation of the edited

posterior when evaluating information and updating beliefs.

Following the noisy cognition literature (Woodford 2020; Khaw et al. 2022), the

agent does not know the edited posterior pR(si). Instead, for each signal realization

si, she has a noisy internal representation ỹ(si) ≡ (ỹ(ω1|si), ..., ỹ(ωN |si)) ∈ ∆(Ω),

which is an unbiased cognitive signal of pR(si). We assume that this representation

is drawn from a multinomial distribution with N categories (i.e., states), η > 0 trials,

and event probabilities pR(si):

ỹ(si) ∼
1

η
Multi(η,N, pR(si)).

The parameter η captures the precision of cognition: it is as-if the agent observed η

draws from distribution pR(si). Therefore, a higher η corresponds to a more precise

representation. The representation is unbiased, in that it has a mean equal to the

edited posterior pR(si). The multinomial distribution is a natural choice for the

distribution of a representation of a probability distribution, as any realization y(si) =

(y(ω1|si), ..., y(ωN |si)) of the cognitive signal is indeed a probability distribution: each

component is between 0 and 1 and the components sum to one, y(ωj|si) ∈ [0, 1] and∑N
j=1 y(ωj|si) = 1. It is the multi-state analogue of the binomial distribution used in

Enke and Graeber (2023).

The agent has a prior about the edited posterior. Letting p̃R(si) denote the

random variable describing the edited posterior, we assume the agent’s prior about

p̃R(si) is a Dirichlet distribution with N categories (i.e., states) and concentration

parameters νp0, where p0 ∈ ∆(Ω) is the prior mean and the inverse of ν ≥ 0 scales

the variance of the prior. As in Enke and Graeber (2023), p0 has the interpretation
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of a cognitive default prior that corresponds to an agent’s belief about parameters of

the information environment before internalizing a particular set of parameters. We

assume that this default is the ‘ignorance prior’ that does not place greater weight

on any given state; i.e., p0(ωi) = 1/N is the uniform distribution.11 Parameter ν

determines how concentrated the agent’s prior is around the default. The Dirichlet

distribution is a natural choice for the prior over the edited posterior, since each draw

from the Dirichlet distribution is a probability distribution over N objects. It is the

multi-state analogue of the Beta prior distribution used in Enke and Graeber (2023).

Given realized representation y(si) ∈ ∆(Ω), the agent uses Bayes’ rule to form

her posterior belief about the edited posterior p̃R(si). Since the Dirichlet distribution

is the conjugate prior of the multinomial distribution, this posterior also follows a

Dirichlet distribution with concentration parameters νp0 + ηy(si) and mean

µ(y(si)) ≡ E[p̃R(si) | y(si)] = λy(si) + (1− λ)p0, (6)

where λ ≡ η/(η + ν) ∈ (0, 1). For our predictions, we focus on the mean observed

posterior, which corresponds to the expectation of µ(ỹ(si)) conditional on the realized

edited posterior pR(si), i.e., E[µ(ỹ(si))|pR(si)]. From Eq. (6), this is equal to

p̂(si) ≡ λpR(si) + (1− λ)p0. (7)

We refer to this as the agent’s subjective posterior. When λ < 1, the agent biases

her subjective posterior towards the cognitive default. As cognition becomes noisier

(lower η) or the prior becomes more precise (higher ν), the agent places more weight

on her cognitive default (lower λ), and as cognition becomes more precise (higher

η) or the prior becomes more diffuse (lower ν), the agent places more weight on her

edited belief (higher λ). When λ = 1 and θ = 0, the subjective posterior is equal to

the objective posterior.

In our analysis, we often focus on the expected state. Let Ê(ω|si) = λER(ω|si)+
(1−λ)E(ωi) denote the subjective posterior expected state following signal realization

si, where E(ω) =
∑

ωi∈Ω p0(ωi)ωi = 1/2 is the expected state under the cognitive

default and ER(ω|si) =
∑

ωj∈Ω pR(ωj|si)ωj is the expected state with respect to the

edited posterior following signal realization si.

Discussion. This cognitive noise model is related to the anchoring-and-adjustment

heuristic in the judgment and decision-making literature (Tversky and Kahneman

1974), where the agent enters a decision environment with an ‘anchor’ belief p0 and

insufficiently adjusts to new information (see Enke and Graeber (2023) for similar

discussion). We are not the first to consider the relationship between the repre-

11We provide direct evidence for this assumption in Section 3 by eliciting beliefs before partic-
ipants are provided with the parameters of the information environment. The ‘ignorance prior’ is
the modal answer and the average is not significantly different from the uniform assumption.
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sentativeness and anchoring-and-adjustment heuristics (see discussion in Griffin and

Tversky (1992)), but our model is unique in formally outlining the predictions for

belief-updating.

Our framework is part of a broader literature on how people use simplifica-

tion strategies when making decisions or forming beliefs (e.g., Banovetz and Oprea

(2023)). For example, Bordalo et al. (2023) present a model where an agent simplifies

hypotheses using bottom-up attention, focusing on features that are salient to him

at the time. The evaluation of these features generate different biases depending on

which features are salient at the time, despite the same underlying information struc-

ture. In the context of our belief-updating framework, the salient features correspond

to states that are most representative of the signal.

2.1.3 Defining Over- and Underreaction

We next define a measure of overreaction based on a comparison of the expected state

under the subjective and objective posteriors. We refer to the objective (subjective)

expected movement in the state following signal realization si as the absolute value of

the difference between the expected state under the objective (subjective) posterior

belief following si and the expected state under the prior belief, |Ê(ω|si)−E(ω)| and
|E(ω|si)− E(ω)|, respectively. We say an agent overreacts to signal realization si if

her subjective expected movement is greater than the objective expected movement,

and underreacts if it is less than the objective expected movement.

Definition 1 (Over- and Underreaction). The agent overreacts to si if |Ê(ω|si) −
E(ω)| > |E(ω|si)− E(ω)| and underreacts if |Ê(ω|si)− E(ω)| < |E(ω|si)− E(ω)|.

When the objective and subjective expected movement coincide, |Ê(ω|si)−E(ω)| =
|E(ω|si) − E(ω)|, the agent neither overreacts nor underreacts to si. This is the

case for all signal realizations when θ = 0 and λ = 1 (the Bayesian benchmark).

When θ > 0 or λ < 1, the objective and subjective expected movement can differ

and over- or underreaction can emerge. Whether an agent overreacts or underreacts

potentially varies across signal realizations: an agent can overreact following one

signal realization and underreact following the other.

In order to compare the magnitude of over- or underreaction across signal realiza-

tions and information environments, we need to define a measure of overreaction that

accounts for the fact that the magnitude of the expected movement varies with the

signal realization and information environment. For example, any signal realization

results in less expected movement when the prior is tighter. Taking the difference be-

tween the objective and subjective expected movement does not account for this, so

we standardize this difference by dividing it by the objective expected movement.12

12To see why this is necessary, note that when all possible states are close to each other, the
numerator of r(si) is naturally small, and the opposite is true if the states are very far apart. In
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This brings us to the following definition of the overreaction ratio following signal si:

r(si) ≡
|Ê(ω|si)− E(ω)| − |E(ω|si)− E(ω)|

|E(ω|si)− E(ω)|
. (8)

Given that the denominator of Eq. (8) is positive, by Definition 1 the agent overreacts

to si if r(si) > 0 and underreacts if r(si) < 0, and neither overreacts nor underreacts

if r(si) = 0.

Definition 1 defines over- and underreaction with respect to the posterior expected

state. This is consistent with both the finance and experimental literatures. The

former typically studies asset prices and average forecasts instead of the entire belief

distribution, which are similar in spirit to the expected state.13 The latter typically

compares the movement of the subjective and objective posterior beliefs in a binary

state space. Given that a single number summarizes the posterior belief for a binary

state space, this definition is equivalent to our comparison of posterior expected

states.14

Given that Definition 1 is based on the absolute value of the difference between

the posterior and prior expected states, it does not distinguish between whether

an agent’s subjective expected state moves in the same or opposite direction as the

objective expected state. We define an additional property of updating to distinguish

between subjective updates that move in the same versus opposite direction as the

objective update.

Definition 2 (Same and Wrong Direction Updates). An agent has a same direction

update at si if Ê(ω|si)−E(ω) ≤ 0 when E(ω|si)−E(ω) ≤ 0 and Ê(ω|si)−E(ω) ≥
when E(ω|si) − E(ω) ≥ 0. Otherwise the agent has a wrong direction update. The

agent has same direction updates if this holds for all signal realizations si ∈ S.

When the subjective and objective posterior expected states move in the same

direction, Ê(ω|si) − E(ω) and E(ω|si) − E(ω) have the same sign. In this case,

the absolute values can be omitted from the expression for r(si) and it reduces to

(Ê(ω|si)− E(ω|si))/(E(ω|si)− E(ω)).

addition, if we double the value of all states, the numerator is automatically doubled. Therefore,
the numerator is not a sensible measure of magnitude.

13Our measure is closely linked to a common empirical test in the finance literature developed
by Coibion and Gorodnichenko (2015). They examine the correlation between forecast errors and
forecast revisions over time, where positive (negative) correlation corresponds to underreaction
(overreaction). In our static belief-updating model, the counterparts of forecast errors and forecast
revisions are E(ω|si) − Ê(ω|si) and Ê(ω|si) − E(ω), respectively. It is straightforward to verify
that if the subjective posterior expected state moves in the same direction as the objective posterior
expected state following si, then r(si) < 0 if and only if (E(ω|si)− Ê(ω|si))(Ê(ω|si)− E(ω)) > 0.

14When Ω is binary, we show that r(si) > 0 if and only if the subjective posterior for state ω1

moves further away from the prior than the objective posterior, i.e., |p̂(ω1|si)−p0(ω1)| > |p(ω1|si)−
p0(ω1)|, and similarly for ω2. See Appendix A for a proof.
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2.2 Predictions

We next explore the interaction between representativeness and noisy cognition, and

show that it gives rise to a predictable pattern of over- and underreaction. We derive

comparative static predictions for how the overreaction ratio varies with respect to

the complexity of the state space, the informativeness of the signal, the shape of

the prior, and how the agent reacts to a confirmatory versus disconfirmatory signal

realization. All proofs for this section are in Appendix A.

We first focus on the case of a symmetric prior. In this case, the expected state

under the prior and the expected state under the cognitive default are both equal to

1/2; i.e., E(ω) = E(ω) = 1/2. It is possible to simplify r(si) to

r(si) = λrR(si)− (1− λ), (9)

where

rR(si) ≡
|ER(ω|si)− E(ω)| − |E(ω|si)− E(ω)|

|E(ω|si)− E(ω)|
. (10)

Note that r(si) is linear and increasing in both λ and rR(si). This highlights the

opposing influences of representativeness and cognitive noise. In environments where

the impact of representativeness dominates, indicated by rR(si) > (1−λ)/λ, the agent

exhibits overreaction. Conversely, when the impact of cognitive noise dominates,

indicated by rR(si) < (1−λ)/λ, the agent exhibits underreaction. While (1−λ)/λ is

a positive constant, rR(si) ranges from 0 to a potentially large number depending on

θ and the information environment (as θ approaches ∞ and the objective expected

movement approaches zero, rR(si) approaches ∞).

Complexity of the State Space. Consider two distinct information environments

(Ω, p0) and (Ω′, p′0) with symmetric state spaces and uniform priors. Let r(si) denote

the overreaction ratio for (Ω, p0) given signal realization si and r′(si) analogously for

(Ω′, p′0). We fix the dispersion of the state space (i.e., the minimum and maximum

states) and vary the complexity of the state space by adding more interior states.

Prediction 1 shows that when the representativeness parameter is sufficiently large,

overreaction increases as the state space becomes more complex.

Prediction 1 (Complexity). Suppose θ > 0 and λ ≤ 1. Consider two distinct

information environments (Ω, p0) and (Ω′, p′0) with symmetric state spaces, the same

dispersion (i.e., ω1 = ω′
1 and ωN = ω′

N), and uniform priors. If Ω′ is more complex

than Ω, and every state in Ω′ \ Ω is more interior than every state in Ω, then for

sufficiently large θ, the agent overreacts more in (Ω′, p′0) than (Ω, p0) following both

signal realizations, r′(si) > r(si) for si ∈ S.

For example, for any x ∈ (0, 0.5) and y ∈ (x, 0.5), the agent overreacts more in

the 3-state environment Ω′ = {x, 0.5, 1 − x} with a uniform prior or the four-state

environment Ω′′ = {x, y, 1− y, 1− x} with a uniform prior than in the binary state
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environment Ω = {x, 1 − x} with a uniform prior, provided that θ is sufficiently

large. Note that the 3-state environment is not directly comparable to the 4-state

environment because the additional states {y, 1−y} in Ω′′ are not more interior than

the state 0.5 in Ω′.

The intuition behind this result is as follows. Suppose the agent observes s2. Un-

der a uniform prior, when the state space becomes more complex, mass is shifted from

extreme states to interior states under the prior. Since the highest state becomes less

likely under the prior, the objective expected movement in the state following the

signal is smaller. However, the representativeness-driven agent does not fully inter-

nalize this change because she overweights the highest state, as it remains the most

representative state following s2. When θ is sufficiently high, the agent’s subjective

expected state is primarily driven by this most representative state, which is the

same in both the original and more complex state spaces. This leads to an increase

in the relative difference between the movement of the subjective expected state and

the objective expected state.

Note that the impact of increasing complexity on overreaction critically hinges

on how the addition of the states changes the relative levels of representativeness.

Such changes are substantial when the states are distinct from each other, but not

when the states are extremely close to or even equal to each other. For example,

the overreaction ratio moves continuously in ε > 0 as we move from state space

Ω = {0.3, 0.7} with a uniform prior to state space Ω′ = {0.3, 0.3 + ε, 0.7, 0.7 + ε}
with a uniform prior. At ε = 0, Ω′ = {0.3, 0.3, 0.7, 0.7} is an exact duplication of Ω,

and therefore, the two information environments yield equivalent overreaction ratios.

In other words, the impact of increasing complexity is not determined by the number

of new states per se, but by the number of new distinct states that affect how much

the agent shifts her attention towards the more representative states.15

Prediction 1 also holds in a representativeness-only model (θ > 0 and λ = 1), but

such a model would predict overreaction in both (Ω, p0) and (Ω′, p′0). This contrasts

with our two-stage model, where it is possible to have underreaction in the sim-

pler environment (Ω, p0) and overreaction in the more complex environment (Ω′, p′0),

or underreaction in both but less underreaction in the more complex environment

(Ω′, p′0).

Dispersion of the State Space. We next explore changes in the extreme states

while keeping complexity and the set of interior states constant. We maintain a uni-

15Indeed, Phillips and Edwards (1966) find significant underreaction in an experiment where there
are ten states but each of them takes one of two unique values. In environments with duplicate
states—or states so close that they are essentially duplicates—we conjecture that people will first
simplify the environment by grouping these redundant states and then further reduce complexity via
the representativeness heuristic. See, for example, Evers, Imas, and Kang (2022) for evidence on how
agents simplify the evaluation of similar outcomes. Testing this prediction is outside the scope of
the current paper, as our experiments focus on information environments with easily distinguishable
states.
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form prior throughout. The impact of changing the extreme states on the agent’s

reaction is more nuanced because moving the extreme states leads to non-trivial

changes in both the objective expected state and the subjective expected state, even

for an agent with a high level of representativeness. For example, consider an infor-

mation structure with five states, Ω = {x, 0.3, 0.5, 0.7, 1 − x}, where x < 0.3. As

x increases, the objective expected state moves less following any signal realization,

since x and 1−x are closer to the prior expected state 1/2. Meanwhile, the subjective

expected state also moves less since representativeness causes the agent to overweight

x following s1 or 1 − x following s2, and as in the objective case, x and 1 − x are

both closer to the prior expected state. Reducing the dispersion of the state space

results in a higher overreaction ratio if the impact on the objective expected state

dominates. We show that under a uniform prior, this occurs when W (Ω) > 0 and

W (Ω′) > 0, where

W (Ω) ≡
∑

i∈{1,N}

(ωi − 1/2)2 −
∑

i ̸∈{1,N}

(ωi − 1/2)2 , (11)

with W (Ω′) defined analogously. When W (Ω) > 0 and W (Ω′) > 0, the extreme

states tend to be close to 0 and 1 and the interior states tend to be close to 1/2.

This results in a signal that is more informative about the extreme states and less

informative about the interior states—and therefore, an objective posterior belief

that attaches a high probability to one of the extreme states. Therefore, the objective

expected state is relatively more sensitive to the values of the extreme states. To

the contrary, if W (Ω) < 0 and W (Ω′) < 0, the objective expected state is less

sensitive to changes in the extreme states and the impact of the change in state space

dispersion on the subjective expected state dominates. Reducing dispersion reduces

the movement in the subjective expected state relatively more than the objective

expected state, leading to a lower overreaction ratio. Taken together, this yields the

following prediction.

Prediction 2 (State Dispersion). Suppose θ > 0 and λ ≤ 1. Consider two distinct

information environments (Ω, p0) and (Ω′, p′0) with the same complexity, the same set

of interior states, symmetric state spaces, and uniform priors. If Ω′ is less dispersed

than Ω, then for sufficiently large θ:

(i) If W (Ω) > 0 and W (Ω′) > 0, then the agent overreacts more in (Ω′, p′0) than

(Ω, p0) following both signal realizations, r′(si) > r(si) for si ∈ S.

(ii) If W (Ω) < 0 and W (Ω′) < 0, then the agent overreacts less in (Ω′, p′0) than

(Ω, p0) following both signal realizations, r′(si) < r(si) for si ∈ S.

As an example, consider Ω = {x, 0.5, 1 − x} and Ω′ = {x′, 0.5, 1 − x′}, where
x < x′ < 0.5 so Ω is more dispersed than Ω′. Since W (Ω) = 2(x − 0.5)2 > 0 and
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W (Ω′) = 2(x′ − 0.5)2 > 0, the agent overreacts more under the less dispersed state

space Ω′ than under Ω for sufficiently large θ.

Signal Diagnosticity. In a symmetric binary state space, the diagnosticity of the

signal is equal across states, d1 = d2 ≡ d. In this case, increasing the dispersion of

the state space is equivalent to increasing the diagnosticity d. It follows as a corollary

of Prediction 2 that a higher diagnosticity leads to less overreaction. In addition, the

agent underreacts to precise signals and, for sufficiently high θ, overreacts to noisy

signals.

Corollary 1 (Diagnosticity—Binary State Space). Suppose θ > 0 and λ ≤ 1. Con-

sider a set of information environments with symmetric binary state spaces param-

eterized by signal diagnosticity d and a uniform prior. Then the overreaction ratio

rd(si) is decreasing in d for si ∈ S. When λ < 1, there exists a cutoff c ∈ [1/2, 1) such

that the agent overreacts to both signal realizations if d ∈ (1/2, c) and underreacts to

both signal realizations if d ∈ (c, 1). When θ is sufficiently large, c > 1/2.

When the state space is symmetric but has more than two states, the vector of

signal diagnosticities (d1, ..., dN) can no longer be conveniently summarized by a single

number. We combine Prediction 1 and Prediction 2 to establish that if W (Ω) > 0,

then the agent reacts more as the signal becomes less informative in all states—or

equivalently, as all states become more interior—for sufficiently large θ.

Corollary 2 (Diagnosticity). Suppose θ > 0 and λ ≤ 1. Consider two distinct

information environments (Ω, p0) and (Ω′, p′0) with the same complexity, symmetric

state spaces, and uniform priors such that W (Ω′) > 0 and W (Ω) > 0. If d′i ≤ di for

all i = 1, ..., N and at least one inequality is strict, then for sufficiently large θ, the

overreaction ratio is larger in (Ω′, p′0) than (Ω, p0) following both signal realizations,

r′(si) > r(si) for si ∈ S.

For example, consider state space Ω = {x, y, 1−y, 1−x} with x ∈ (0, 0.5), y ∈ (x, 0.5)

and a uniform prior. We can readily verify W (Ω) > 0. Corollary 2 implies that the

agent reacts more as x and y both move closer to 1/2 for sufficiently large θ.

Prior Concentration. Next, consider two symmetric information environments

(Ω, p0) and (Ω, p′0) with the same state space and different priors. We say that p′0 is

more concentrated than p0 if there exists a cutoff c ∈ (1/2, 1) such that p′0(ω) ≥ p0(ω)

for all ω ∈ [1 − c, c] and p′0(ω) ≤ p0(ω) for all ω ∈ [0, 1 − c] ∪ [c, 1], and is strictly

more concentrated if at least one of the inequalities is strict. In words, a more

concentrated prior assigns higher probability to interior states and lower probability

to extreme states. Prediction 3 establishes that the overreaction ratio increases in

the concentration of the prior.

Prediction 3 (Prior concentration). Suppose θ > 0 and λ ≤ 1. Consider two sym-

metric information environments (Ω, p0) and (Ω, p′0). If p′0 is strictly more concen-
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trated than p0, then for sufficiently large θ, the agent overreacts more in (Ω, p′0) than

in (Ω, p0) following both signal realizations, r′(si) > r(si) for si ∈ S.

The intuition behind Prediction 3 is similar to that of Prediction 1. With a

more concentrated prior, the objective expected state moves less following each sig-

nal realization, but the representativeness heuristic continues to result in the agent

over-weighting the extreme states. Therefore, the agent exhibits more overreaction.

Without cognitive noise, the representativeness-only model predicts overreaction un-

der both priors. In contrast, the two-stage model with representativeness and cog-

nitive noise can also result in underreaction under the less concentrated prior and

overreaction under the more concentrated prior, or underreaction under both priors.

Asymmetric Prior. Finally, we consider information environments with asym-

metric priors. We restrict attention to symmetric binary state spaces where it is

straightforward to manipulate the symmetry of the prior. In such environments, we

can define whether a signal realization is confirmatory or disconfirmatory based on

its alignment with the prior.

Definition 3. In a symmetric binary state space, a signal realization si is confirma-

tory if either (i) p0(ω1) > p0(ω2) and Pr(si|ω1) > Pr(si|ω2), or (ii) p0(ω1) < p0(ω2)

and Pr(si|ω1) < Pr(si|ω2). A signal realization si is disconfirmatory if either

(iii) p0(ω1) > p0(ω2) and Pr(si|ω1) < Pr(si|ω2), or (iv) p0(ω1) < p0(ω2) and

Pr(si|ω1) > Pr(si|ω2).

For example, if the prior assigns higher probability to state ω1, then a signal real-

ization is confirmatory if it is more likely under ω1 than ω2 (the signal is expected),

and is disconfirmatory if it is more likely under ω2 than ω1 (the signal is surprising).

Note that in the case of a symmetric prior p0(ω1) = p0(ω2), a signal realization is

neither confirmatory nor disconfirmatory.

The two-stage model generates a rich set of predictions about reactions to con-

firmatory versus disconfirmatory signal realizations. When λ < 1, the agent can

overreact to a disconfirmatory realization and underreact to a confirmatory realiza-

tion. When the signal is relatively uninformative, the agent updates in the wrong

direction following a confirmatory realization. Moreover, when representativeness is

sufficiently high, the agent also overreacts to a confirmatory realization of a signal

with intermediate diagnosticity.

Prediction 4 (Asymmetric Prior). Suppose θ ≥ 0 and λ < 1. Consider a binary

state space Ω with signal diagnosticity d and prior p0.

(i) Suppose si is confirmatory. There exist cutoffs 1/2 < c1 ≤ c2 ≤ c3 < 1

such that the agent has a wrong direction update if d ∈ (1/2, c1), overreacts

if d ∈ (c2, c3), and underreacts if d ∈ (c1, c2) ∪ (c3, 1). Moreover, (c2, c3) is

nonempty for sufficiently large θ.
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(ii) Suppose si is disconfirmatory. There exist cutoffs 1/2 < c4 ≤ c5 < 1 such that

the agent overreacts if d ∈ (1/2, c4) and underreacts if d ∈ (c5, 1).

For intuition, consider the case where the agent is not subject to representa-

tiveness (θ = 0). Suppose the prior places more weight on ω2, resulting in a prior

mean E(ω) > 1/2. A relatively uninformative confirmatory realization s2 increases

the objective expected state, E(ω|s2) > E(ω), but this increase is small. However,

noisy cognition results in the agent compressing her subjective expected state to-

wards the cognitive default 1/2 with a non-trivial weight of 1 − λ, resulting in a

wrong direction update, Ê(ω|s2) < E(ω). In contrast, following a relatively uninfor-

mative disconfirmatory realization s1, the objective expected state decreases slightly

but remains above the cognitive default of 1/2, 1/2 < E(ω|s1) < E(ω). Noisy cog-

nition pulls the subjective expected state towards the cognitive default, decreasing

it more than E(ω|s1) and implying overreaction. As the diagnosticity increases,

the signal outweighs the prior in determining the direction of the posterior, i.e.,

E(ω|s1) < 1/2 < E(ω). In this case, noisy cognition pulls the subjective expected

state back up towards the cognitive default of 1/2, decreasing it less than E(ω|s1)
and resulting in underreaction. When the agent is also subject to representativeness

(θ > 0), she reacts more to both signal realizations, and more so when the signal is

relatively uninformative. If this force is strong enough, the agent may even overreact

to a confirmatory realization with an intermediate diagnosticity. As the diagnosticity

approaches 1, similar to our observation in Corollary 1, the impact of representative-

ness is dominated by the impact of noisy cognition. Thus, the agent underreacts

regardless of whether the signal realization is confirmatory or disconfirmatory.

3 Empirical Investigation

In this section, we test the predictions of our framework in a controlled experimental

setting. In particular, we test how belief-updating depends on complexity, the infor-

mativeness of the signal, the shape of the prior, and the type of signal realization (i.e.,

confirmatory versus disconfirmatory). We also directly test the proposed attentional

mechanism.

3.1 Method

Participants were recruited from the Prolific crowdsourcing platform. A total of 2,210

participants (49.3% female, 38.3 average age) took part in our experiment.16 They

first had to pass an attention check before reading any experimental instructions.

Those who did not pass the first attention check did not proceed to the rest of the

study; we did not collect data from these participants and they are not included

in the participant totals. After passing the initial screen, participants were told

that in addition to the base payment of $2, they could earn two additional bonus

16Preregistration materials can be found here: https://aspredicted.org/LTJ CS7 and https://
aspredicted.org/Q77 3LG.
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payments. First, they earned $1 for answering a comprehension check that followed

the instructions. Second, they would earn an additional $10 if their response to

a randomly-chosen belief elicitation question was within 3% of the corresponding

objective posterior.17 We used this incentive procedure as opposed to more complex

mechanisms (e.g., quadratic or binarized scoring rules) because recent evidence shows

that these mechanisms can systematically bias truthful reporting.18

3.2 Design

Participants who passed the initial attention check were given the following descrip-

tion of the information environment:19

There is a deck of 100 cards, where each card has the number of a bag written on

it, e.g., ‘Bag 1’ or ’Bag 2’. Each possible bag has 100 balls, which are either red or

blue. The computer will randomly draw a card from the deck to select a bag, then

randomly draw one ball from the selected bag and show it to you.

Participants completed multiple trials, each of which involved a new randomly

selected bag and ball. In each trial, the participant was told the number of bags (the

states), how many cards corresponded to each bag (the prior), and how many red

versus blue balls each bag contained (the information structure). After observing the

color of the randomly drawn ball (the signal realization, with s1 = b corresponding

to blue and s2 = r corresponding to red), the participant’s task was to report how

likely she thought that each bag was selected (i.e., Bag 1, Bag 2, etc.) by reporting a

percentage from 0 to 100. We required these percentages to add up to 100 across all

possible bags. After reporting this probability assessment, the participant proceeded

to the next trial.

This ‘bookbag-and-poker-chip’ design (Edwards 1968) cleanly maps onto the in-

formation environment in our model. The number of bags corresponds to the size

of the state space, the number of cards for each bag corresponds to the objective

prior, and the number of red versus blue balls in each bag corresponds to the in-

formation structure. As in Section 2, we set the value of the state corresponding

to a given bag as the share of red balls in this bag, ωi = Pr(r|ωi), and we define

the diagnosticity of the signal in state ωi as the probability of the more likely ball

color, di ≡ max{ωi, 1 − ωi}. For example, in the 2-state case in which ‘Bag 1’ has

60 red balls and ‘Bag 2’ has 40 red balls, we have d1 = d2 = 0.6. Fig. 1 depicts an

information environment with 3 states, a concentrated prior with more probability

mass on the interior state (Bag 2) and less on the more extreme states (Bags 1 and

17See Enke, Graeber, and Oprea (2023) for similar use of objective posterior as the incentivized
benchmark.

18Danz, Vesterlund, and Wilson (2022) show that the binarized scoring rule leads to conservatism
in elicited beliefs and greater error rates compared to simpler mechanisms; they argue that incentives
based on belief quantiles—such as the one we use here—will result in more truthful reporting and
lower cognitive burden.

19The specific instructions can be found in Appendix C.
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3), and information structure with signal diagnosticity 0.6 in Bags 1 and 3, and 0.5 in

Bag 2. In this environment, Bag 1 corresponds to state ω3 = 0.6, Bag 2 corresponds

to state ω2 = 0.5 and Bag 3 corresponds to state ω3 = 0.4.

Figure 1. Experimental design for 3-state treatment

It is straightforward to manipulate the parameters of the information environment

in this design. We manipulated four factors to test the predictions of our model:

• Complexity of State Space: The number of bags.

• Information Structure: The number of red versus blue balls in a given bag.

• Prior Concentration: In a symmetric state space with more than two bags,

the number of cards corresponding to bags with a more extreme distribution

of ball colors (i.e., more extreme states) versus a more moderate distribution

(i.e., more interior states).

• Prior Symmetry: In a symmetric state space with two bags, the prior prob-

ability of one versus the other bag.

Table 9 in Appendix B.1 outlines the set of parameter combinations that we used

in our experiments. As in the model, we focus on symmetric information structures

(e.g., if there was a bag with 40 red balls, there was also a bag with 60 red balls).

The most ‘representative’ bag always corresponded to Bag 1 or Bag N , depending

on whether a red or blue ball, respectively, was drawn.20

Beyond the clean mapping to our model and the ease with which we can manip-

ulate the parameters of the information environment, this ‘bookbag-and-poker-chip’

design has several advantages. First, it allows for a transparent calculation of the

objective Bayesian benchmark. For example, suppose there are 50 ‘Bag 1’ cards and

20For example, in the N = 3 state case with Pr(r|ω1) = 0.4, Pr(r|ω2) = 0.5 and Pr(r|ω3) = 0.6,
if a red ball was drawn, the representative bag was the one with 60 red balls, and if a blue ball was
drawn, the representative bag was the one with 40 red balls.
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50 ‘Bag 2’ cards, with Bag 1 containing 70 red balls and Bag 2 containing 30 red

balls. Upon observing a red ball, the Bayesian posterior that Bag 1 was selected is

0.7. Second, the paradigm is used extensively in the literature, with the vast majority

of papers using a simple state space with two bags. Consistent with our framework,

these papers predominantly find underreaction. It would therefore be particularly

noteworthy to show evidence for overreaction in the setting where underreaction is

typically documented.

The timing of the experiment proceeded as follows. After reading the instructions,

participants completed a set of comprehension questions. They were then randomized

into one of the complexity conditions—2, 3, 4, 5 or 11 states—and completed a

set number of trials in random order. Each complexity condition had at least 200

participants. The total number of possible unique trials for each complexity condition

was equal to the product of the number of prior distributions, information structures,

and signal realizations (which was always 2).21 Each subject completed a maximum

of 15 trials which were randomly drawn from the total set of possible trials. After

completing all the trials, participants answered a set of basic demographic questions

and exited the study.

To measure the cognitive default prior p0, we ran a version of the 3-state and 11-

state uniform prior parameterizations where participants (N = 149) were presented

with the basic structure of the experiment but not the actual underlying parameters.22

Participants were then asked, based on the information provided, how many cards

of each bag type were most likely to be in the deck. In addition to a $1 completion

fee, they received a $1 bonus if one of their randomly-selected guesses was within

3% of the actual number of cards corresponding to that bag. A joint F-test cannot

reject that participants were assigning the same probability to each bag in both the

3- and 11-state conditions. This is consistent with a uniform cognitive default, i.e.,

the ‘ignorance prior.’

Defining Over- and Underreaction. Our main dependent variable compares

participants’ responses to the objective prior and posterior. Recall that our measure

of reaction (Eq. (8) in Section 2) is based on the perceived versus objective expected

state. Since in our experimental environment the numeric value of a given state is

the fraction of red balls in the corresponding bag, the expected state is equal to

the expected probability of drawing a red ball. In every trial, we calculate (a) the

participant’s expectation of drawing a red ball given their reported beliefs, (b) the

objective prior expectation of drawing a red ball, and (c) the objective posterior

expectation of drawing a red ball. Using these measures, we compute the reaction

21For example, the total number of unique trials in the 3-state condition was 3 (priors) × 8
(information structures) × 2 (signal realizations) = 48.

22Namely, participants were told that there were three or eleven potential bags but not the
composition of bags in the deck nor the composition of balls in each bag.

23



ratio r(si) defined in Eq. (8). A positive (negative) r(si) corresponds to over- (under-)

reaction in that trial. We use the average of the reaction ratios across participants in

a given information environment as our primary measure of over- and underreaction

in the analysis.

Experimental studies on belief-updating often measure over- and underreaction

by running the so-called Grether regression (Grether 1980), which decomposes the

logarithm of the posterior odds ratio into the logarithm of the prior ratio and the

logarithm of the signal likelihood, log p̂(ω2|si)
p̂(ω1|si) = c1 log

p0(ω2)
p0(ω1)

+ c2 log
Pr(si|ω2)
Pr(si|ω1)

. These

studies focus on binary state spaces in which the posterior belief can be summarized

by a single likelihood ratio. This is no longer the case with more than two states, and

therefore, the Grether regression is not applicable in our multi-state setting. Further-

more, the Grether regression imposes a log-linear structure on the form of over- and

underreaction. This could mask important relationships between the parameters of

the information structure and the extent of under- or overreaction. In contrast, our

measure, which is based on expectations, is non-parametric and thus free from such

restrictions.

3.3 Results

In this section, we test our predictions on how complexity, signal diagnosticity, prior

concentration, and prior symmetry impact belief-updating. Per our pre-registration,

unless otherwise noted, we exclude trials in which participants update in the wrong

direction. Appendix B.2 replicates the analyses including wrong direction updates;

the results do not qualitatively change.

3.3.1 Complexity

To test Prediction 1, we compare belief-updating in information environments with

a uniform prior that vary complexity while holding the dispersion of the state space

(i.e., the highest and lowest states) constant. We begin by looking at how belief-

updating changes when complexity is increased by just one state (comparing 2-state

versus 3-state treatments). We then study the effect of adding progressively more

interior states (comparing the 2-state treatment to 4-state and 5-state treatments).23

Although not a direct test of Prediction 1, the 11-state treatment allows us to examine

belief-updating with the addition of ‘many’ states. For convenience, we use d to

denote the signal diagnosticity associated with the extreme states, d ≡ d1 = dN .

In the simple 2-state treatment, we replicate the underreaction result from the

experimental literature. Namely, on average, participants’ reported posterior beliefs

move significantly less than the Bayesian benchmark (r < 0, p < .001).24 Fig. 2a

23We do not have a prediction for how the overreaction ratio in the 3-state treatment compares
to the 4-state and 5-state treatments because the latter do not add interior states to the former.

24This p-value and others reported in the text come from a one-sample t-test against 0, unless
otherwise noted.
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(a) Overreaction Ratio (b) % Overreact - % Underreact

Figure 2. Complexity increases overreaction

plots the overreaction ratio for both signal realizations across different information

structures. The x-axis corresponds to the probability of the realized signal in the

highest state ωN . When a red ball is observed, this probability ranges from 0.6

to 0.9 depending on the signal diagnosticity d; when a blue ball is observed, this

probability ranges from 0.1 to 0.4 depending on d (see Table 9 for a list of the two-

state information structures).25 We observe significant underreaction to both signal

realizations across nearly all information structures in the 2-state treatment. This is

consistent with the evidence outlined in Benjamin (2019) that shows underreaction

to signals in a host of experiments using a similar paradigm to our own.

Increasing the complexity of the state space reverses this result. Strikingly, in-

creasing complexity by even a single state—going from 2 to 3 states—leads partic-

ipants to report posterior beliefs that move significantly more than the Bayesian

benchmark, r > 0 (p < .001). As illustrated in Fig. 2a, in the 3-state treatment

we observe significant overreaction to both signal realizations across all information

structures.

This pattern continues as we move to more complex settings. Table 1 compares

the 2-state, 4-state, and 5-state treatments. At every diagnosticity d for the 2-state

case, the 4-state treatment adds two interior states and the 5-state treatment adds

three interior states. Column 1 regresses the overreaction ratio on dummies corre-

sponding to the 4-state and 5-state treatments, with the 2-state treatment as the

control. As seen in the table, increasing the complexity of the state space leads to

a significant increase in overreaction: the overreaction ratio is significantly higher in

the 4-state and 5-state treatments compared to the simple 2-state treatment. More-

over, the overreaction ratio is significantly higher in the 5-state treatment compared

to the 4-state treatment (the former adds one interior state to the latter): the coeffi-

25Due to the symmetry of the information structure, when a blue ball occurs with probability x
in state ωN , then a red ball occurs with probability 1− x. Therefore, on the x-axis of Fig. 2a, 0.1
and 0.9 correspond to blue and red signal realizations from the same information structure, and so
on.
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Table 1. Complexity increases overreaction

Overreaction Ratio
(1) (2)

4 States 0.276∗∗∗ 0.371∗∗∗

(0.0295) (0.0315)

5 States 0.365∗∗∗ 0.455∗∗∗

(0.0359) (0.0383)

d = 0.7 -0.158∗∗∗

(0.0407)

d = 0.8 -0.355∗∗∗

(0.0422)

d = 0.9 -0.462∗∗∗

(0.0437)

Constant -0.116∗∗∗ 0.127∗∗∗

(0.0219) (0.0409)
N 6253 6253
adj. R2 0.037 0.095

Notes: Baseline is 2 States and, in Column 2, diagnosticity
d = 0.6. Includes information environments with a uniform
prior and 2 states, 4 states or 5 states listed in Table 9; ex-
cludes wrong direction updates. Standard errors clustered at
the individual level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

cient on the 4-state dummy is significantly smaller than the coefficient on the 5-state

dummy (p < .01). Column 2 also controls for the information structure by including

dummies for each diagnosticity, with d = 0.6 as the control. It finds a similar pattern

of overreaction increasing with complexity. Finally, we also observe significant over-

reaction in the 11-state treatment, r > 0 (p < .001); this treatment has the highest

average overreaction ratio.

Fig. 2b uses a discrete measure that captures the frequency of deviations from

the Bayesian benchmark. For each complexity treatment, this measure computes

the difference between the fraction of trials with overreaction and the fraction with

underreaction. A positive value indicates a prevalence of overreaction and a negative

value indicates a prevalence of underreaction. We again see that participants tend

to underreact in the 2-state treatment, but overreact when complexity increases.

Together, these results provide strong support for Prediction 1.
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Table 2. Overreaction decreases in signal diagnosticity

Overreaction Ratio
(1) (2) (3) (4)

2 States 3 States 4 States 5 States
d = 0.7 0.0450 -0.218∗∗∗ -0.370∗∗∗ -0.196∗∗

(0.0483) (0.0502) (0.0655) (0.0863)

d = 0.8 -0.0268 -0.421∗∗∗ -0.597∗∗∗ -0.402∗∗∗

(0.0498) (0.0496) (0.0692) (0.0864)

d = 0.9 -0.0432 -0.461∗∗∗ -0.669∗∗∗ -0.558∗∗∗

(0.0484) (0.0505) (0.0725) (0.0878)

Constant -0.110∗∗ 0.535∗∗∗ 0.703∗∗∗ 0.644∗∗∗

(0.0475) (0.0554) (0.0755) (0.0942)
N 870 1347 2754 2629
adj. R2 0.002 0.070 0.117 0.059

Notes: Baseline is diagnosticity d = 0.6. Includes all informa-
tion environments with a uniform prior listed in Table 9 except
for the 11-state complexity; excludes wrong direction updates.
Standard errors clustered at the individual level in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

3.3.2 Signal Diagnosticity

To test Prediction 2 and Corollary 2, we compare belief-updating as a function of

diagnosticity d while holding the complexity constant. As above, we focus on in-

formation environments with a uniform prior and d corresponds to the diagnosticity

of the extreme states. Fig. 2a provides support for the predictions in the 3-state

treatment: overreaction clearly decreases as signals become more precise, with the

highest level of overreaction as d approaches 0.5 (noisiest signal) and the lowest level

of overreaction as d approaches 0.9 (most precise signal), which corresponds to 0.1

and 0.9 on the x-axis. Table 2 provides further support in the other complexity treat-

ments. Each column regresses the overreaction ratio in a given complexity treatment

on dummy variables for the diagnosticity d, with d = 0.6 as the control.26 Consistent

with the prediction, there is progressively less overreaction as d increases, i.e., as

signals become more precise. For example, in the 5-state treatment (Column 4), the

overreaction ratio decreases by 0.56 as d increases from 0.6 to 0.9.27

26This analysis pools the information structures for a given diagnosticity of the extreme states.
For example, in the 5-state treatment, when d = 0.9, the diagnosticity in the fourth states, d4,
ranges from 0.55 to 0.8. The results do not change qualitatively if we further split the analysis by
diagnosticity of the interior states.

27Edwards (1968) and Augenblick et al. (2022) find overreaction to extremely noisy signals in a
2-state environment. We ran a version of the 2-state treatment with d = 0.51 and also find evidence
for overreaction to this very noisy signal (r = 0.08, p < .001), although to a lesser extent than in
the more complex environments.
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Figure 3. Overreaction increases in prior concentration

One potential concern is that changes in complexity and the information structure

also change the Bayesian benchmark. Since our primary measure of overreaction

is defined relative to the Bayesian benchmark, we may find the same pattern of

under- versus overreaction even if participants do not understand the information

environment and simply use a constant heuristic that reports the same posterior belief

independently of changes in the information environment. To address this concern,

Fig. 10 in Appendix B.3 presents the average reported posterior belief about each

state for each information structure. There are several things to note. First, posterior

beliefs shift from underreaction in the 2-state treatment to overreaction in the more

complex treatments across all information structures. Second, it is readily apparent

that this shift is due to participants actively changing their reported beliefs as a

function of the information environment, in line with the theoretical framework. The

changes in state-specific beliefs we observe are inconsistent with a constant heuristic

response. Therefore, this is an unlikely alternative mechanism for our results.28

3.3.3 Prior Concentration

To test Prediction 3, we examine how the concentration of the prior affects belief-

updating. Our experiment focused on 3-state environments, manipulating the prior

from a diffuse prior of (0.4, 0.2, 0.4) that placed twice as much mass on the extreme

states relative to the interior state, to a uniform prior of (0.33, 0.34, 0.33), to a concen-

trated prior of (0.25, 0.50, 0.25) that placed twice as much mass on the interior state

relative to the extreme states.29 As illustrated in Fig. 3, consistent with Prediction 3,

28Section 3.5 provides further evidence against the constant heuristic mechanism in a setting
that fixes the information environment and manipulates usable attention capacity.

29Note that our predictions hold for any number of states greater than two. The prior concen-
tration cannot shift by definition in a two-state environment.
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Table 3. Overreaction increases in prior concentration

Overreaction Ratio
(1) (2)

Concentrated Prior 0.213∗∗∗ 0.213∗∗∗

(0.0547) (0.0547)

Diffuse Prior -0.215∗∗∗ -0.214∗∗∗

(0.0321) (0.0320)

d = 0.7 -0.311∗∗∗

(0.0321)

d = 0.8 -0.503∗∗∗

(0.0327)

d = 0.9 -0.557∗∗∗

(0.0332)

Constant 0.260∗∗∗ 0.603∗∗∗

(0.0253) (0.0401)
N 4026 4026
adj. R2 0.048 0.127

Notes: Includes all information environments with three states
listed in Table 9; excludes wrong direction updates. Baseline
is uniform prior (0.33, 0.34, 0.33) and, in Column 2, diagnostic-
ity d = 0.6. Concentrated prior corresponds to (0.25, 0.5, 0.25)
and diffuse prior corresponds to (0.4, 0.2, 0.4). Standard errors
clustered at the individual level in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

we observe significantly more overreaction as the prior becomes more concentrated.

This holds across both signal realizations for each possible information structure in

the 3-state treatment. Table 3 Column 1 regresses the overreaction ratio on a dummy

for a concentrated prior and a diffuse prior, with the uniform prior as the control.

As shown in the table, participants overreact significantly more when the prior is

concentrated and significantly less when the prior is diffuse. This comparative static

continues to hold when controlling for the information structure (Column 2).

We observe significantly less overreaction for higher diagnosticities across all three

priors, as shown in Fig. 3 and Column 2 of Table 3. Under a diffuse prior, we actually

observe significant underreaction for high diagnosticities (e.g., the overreaction ratio

is significantly less than zero for d = 0.8 and d = 0.9). Otherwise, we observe

significant overreaction (i.e., the overreaction ratio is significantly greater than zero).

Together, these findings provide strong support for Prediction 3.
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(a) Underreaction to precise signals &
overreaction to noisy signals

(b) More overreaction to
disconfirmatory realizations

Figure 4. Overeaction with asymmetric priors

3.3.4 Prior Symmetry

To test Prediction 4, we examine how the type of signal realization (confirmatory

versus disconfirmatory) affects belief-updating in information environments with an

asymmetric prior. We focus on 2-state environments, manipulating the prior from an

asymmetric prior of (0.3, 0.7) or (0.7, 0.3) to a symmetric prior of (0.5, 0.5). Fig. 4a

presents the overreaction ratio aggregated across all three priors. We continue to ob-

serve significant underreaction for more precise signals, but also observe overreaction

to noisier signals.

However, aggregating across priors masks significant heterogeneity in belief-updating

following a confirmatory (the more likely, or expected, realization under the prior)

versus a disconfirmatory (the less likely, or surprising, realization under the prior)

signal realization.30 As illustrated in Fig. 4b and consistent with Prediction 4, we

observe more underreaction to the ‘expected’ confirmatory realizations (left side of

green curve, right side of red curve) and less underreaction or even overreaction to

the ‘surprising’ disconfirmatory realizations (left side of red curve, right side of green

curve). This overreaction occurs even in the simple 2-state case. Table 4 Column

1 regresses the overreaction ratio on dummies for whether a signal realization was

confirmatory or disconfirmatory, with neutral realizations in the uniform prior envi-

ronment as the control. As shown in the table, participants overreact significantly

more to disconfirmatory realizations and significantly less to confirmatory realiza-

tions. This comparative static continues to hold when controlling for the information

structure (Column 2). Participants indeed appear to overreact more to surprising

news compared to news that is expected.

30Under prior (0.3, 0.7), a red ball is confirmatory and a blue ball is disconfirmatory, with the op-
posite under prior (0.7, 0.3). Under a uniform prior, both red and blue balls are neutral realizations
(neither confirmatory nor disconfirmatory).
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Table 4. More overreaction to disconfirmatory realizations

Overreaction Ratio
(1) (2)

Confirmatory Realization -0.302∗∗∗ -0.253∗∗∗

(0.0255) (0.0268)

Disconfirmatory Realization 0.443∗∗∗ 0.422∗∗∗

(0.0474) (0.0443)

d = 0.7 -0.404∗∗∗

(0.0542)

d = 0.8 -0.484∗∗∗

(0.0532)

d = 0.9 -0.464∗∗∗

(0.0543)

Constant -0.116∗∗∗ 0.223∗∗∗

(0.0219) (0.0505)
N 2432 2432
adj. R2 0.148 0.206

Notes: Includes all information environments with two states listed
in Table 9; excludes wrong direction updates. Baseline is uniform
prior (0.5, 0.5) and, in Column 2, diagnosticity d = 0.6. Standard
errors clustered at the individual level in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

Finally, we explore the prediction that people are more likely to update in the

opposite direction from the Bayesian benchmark, i.e., a wrong direction update, for

confirmatory realizations relative to neutral or disconfirmatory realizations (Predic-

tion 4.i). Fig. 5 presents the share of wrong direction updates for confirmatory,

disconfirmatory and neutral signal realizations. Consistent with Prediction 4, we

observe a significant difference in these frequencies. While wrong direction updates

occur relatively infrequently following neutral and disconfirmatory realizations, they

occur significantly more often following confirmatory realizations. In the latter case,

nearly 30% of updates are in the wrong direction—almost three times higher than in

the former cases. Importantly, this incidence of wrong direction updates is not arbi-

trary noise (e.g., inattentive subjects), but is predicted by our model as a function

of the information environment and type of signal realization.

3.4 Structural Estimation

We next use the experimental data to estimate the two parameters of the belief-

updating model, θ and λ. We first estimate aggregate parameters across all partici-

pants and then explore individual-level heterogeneity.
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Figure 5. Higher share of wrong direction updates for confirmatory realizations

3.4.1 Aggregate-Level Estimation

We refer to the model-predicted posterior belief given parameter values θ and λ as

a model prediction and denote it by p̂θ,λ (see Eq. (7)). This prediction maps each

information environment (Ω, p0) and signal realization si to a subjective posterior

distribution p̂θ,λ(si;Ω, p0) ∈ ∆(Ω).

To estimate the parameters, we follow the literature on behavioral structural es-

timation (e.g., DellaVigna (2018) and Bordalo, Gennaioli, Ma, and Shleifer (2020)).

We search a grid of parameters for the values that minimize the weighted sum of

distances between the participants’ reported posteriors and the model-predicted pos-

teriors across all trials. We measure the distance between a reported posterior and

a predicted posterior by the Kullback-Leibler (henceforth KL) divergence of the re-

ported posterior from the predicted posterior.31 This is a common measure of the

statistical distance between two probability distributions. Since the KL divergence

is undefined when p̂θ,λ(ωj|si;Ω, p0) = 0, we restrict our analysis to information en-

vironments that generate predicted posteriors with full support on Ω. Specifically,

we include trials for all information environments listed in Table 9 except for the

11-state complexity.32

The estimated parameter values are θ = 0.85 and λ = 0.70, as summarized in

Table 5; both estimates are significantly different from the Bayesian benchmark of

θ = 0 and λ = 1. The estimates suggest that in the editing stage, directing attention

31The KL divergence of reported posterior p̂(si;Ω, p0) from predicted posterior p̂θ,λ(si;Ω, p0) is
given by

∑
ωj∈Ω p̂(ωj |si;Ω, p0) log(p̂(ωj |si;Ω, p0)/p̂θ,λ(ωj |si;Ω, p0)).

32An alternative distance measure is the quadratic difference between the expectation of the
reported posterior and the predicted posterior. As a robustness check, in Appendix B.4 we estimate
θ and λ using this measure for the prediction loss function. We chose the KL divergence as our
primary measure since it is independent of the values of the states, whereas the quadratic difference
places a larger weight on higher states.
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Table 5. Aggregate-level estimates of θ and λ

θ 95% CI λ 95% CI
Parameter Estimates 0.85 (0.82, 0.92) 0.70 (0.69, 0.70)

Notes: Parameter estimates that minimize the average KL divergence at the aggregate
level. Includes all information environments listed in Table 9, except for the 11-state
complexity; excludes wrong direction updates. The 95% confidence intervals are ob-
tained from 300 bootstrap samples.

to the representative states leads participants to update beliefs as-if they are counting

the signal nearly twice. In the evaluation stage, participants’ cognitive imprecision

leads them to anchor on the cognitive default and adjust only 70% of the linear

distance to the edited posterior.33

Our parameter estimates are qualitatively similar to others in the literature. Enke

and Graeber (2023) estimate cognitive noise in a simple 2-state environment and

obtain an estimate of λ close to 0.5. Bordalo et al. (2019) examine forecasters’

expectations about a series of economic indicators and find that θ ranges from 0.3 to

1.5, with an average of 0.6. It is noteworthy that we obtain a qualitatively similar

value in a very different setting.

3.4.2 Individual-Level Estimation

Next, we estimate individual-level parameters for each participant. Although each

participant was assigned to a single complexity treatment, we have sufficient data

to estimate individual-level parameters for most participants (N = 1546) due to the

variation in the prior and the information structure. We estimate the individual-level

parameters in an analogous way to the aggregate estimates. For a given participant,

we find the parameter values that minimize the average KL divergence of the partic-

ipant’s reported posteriors from the predicted posteriors across all her trials.

The results are presented in Fig. 6. Each point in the figure represents the param-

eter estimates for one participant. These estimates reveal significant heterogeneity

across participants. Specifically, 70% of participants exhibit both the representative-

ness heuristic and cognitive imprecision, as characterized by estimates of θ > 0 and

λ < 1. Additionally, 9% of participants exhibit only cognitive imprecision (θ = 0),

5% exhibit only representativeness (λ = 1), and the remaining 16% exhibit neither

bias (θ = 0 and λ = 1). The estimated values of θ and λ exhibit a significant negative

correlation, with a correlation coefficient of −0.47. The negative correlation implies

that participants who are more prone to simplification through representativeness

33As a robustness check, in Appendix B.4 we estimate the parameters excluding information
environments with an asymmetric prior. Our model predicts that cognitive noise may lead an
agent to update in the wrong direction under an asymmetric prior (Prediction 4). Since we drop
wrong direction updates in Table 5, this could potentially lead to an underestimation of λ. We find
qualitatively similar parameter estimates in this robustness check.
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Figure 6. Individual level parameter estimates.

Notes: Parameter estimates that minimize the average KL divergence at the individual level. In-
cludes all information environments listed in Table 9, except for the 11-state complexity; excludes
wrong direction updates; excludes extreme estimates of θ larger than 5 (approx. 5.5% of sample).

(higher θ) also tend to exhibit higher levels of cognitive imprecision (lower λ). This

suggests that individual-level limits to cognitive capacity lead people to both engage

in more simplification in the editing stage and noisier processing in the evaluation

stage.

3.5 The Role of Attention

We next directly test the cognitive mechanism for our two-stage updating model. In

the editing stage of our model, limits on attention and working memory lead agents

to focus on representative states in complex learning environments. The framework

thus predicts that (i) after observing the signal, agents’ attention will be channeled

bottom-up towards the state that is most representative of the signal realization, and

(ii) any further limits on cognitive resources will exacerbate representativeness and

lead to more overreaction.

To test these predictions, we employ the Mouselab paradigm of Payne et al.

(1988), which is a commonly-used tool in cognitive psychology to study attention.34

The Mouselab paradigm captures participants’ attention to various features of the

decision problem by the timing of the objects that they click on. For example, in a

lottery choice task, participants are asked to click on the attributes of each gamble

(e.g., the probability of winning each reward, the potential reward if a state is re-

34The Mouselab design, which has 2823 Google Scholar citations to date, has been used to study
attention and information acquisition across a wide array of domains, from identifying decision
strategies in consumer choice (Reisen, Hoffrage, and Mast 2008) to information search strategies in
dynamic contexts (Callaway, Lieder, Krueger, and Griffiths 2017).
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alized) before selecting a gamble. The first click is taken as a proxy for the feature

that is attended to first, the second as a proxy for the feature that is attended to

second, etc.35 Research has also shown that the Mouselab paradigm, which requires

participants to click on attributes, puts additional demands on cognitive attentional

resources: while the ordering of clicks corresponds to ordering of attention, the pro-

cess of clicking itself requires additional attention to implement (Meißner et al. 2010;

Wolfe, Alvarez, and Horowitz 2000; Alvarez, Horowitz, Arsenio, DiMase, and Wolfe

2005).

We used the Mouselab paradigm to measure the order in which participants

clicked on the states as well as how the further attentional demands of the paradigm

impacted belief-updating. This Limited Attention treatment required a participant

to click on a state (e.g., Bag 5) before being able to enter her posterior belief about

the state. Once a state was clicked, the participant could enter her belief for that

state as before. As in the baseline treatment, the percentage assigned to each state

had to sum to 100 and the order of states was randomized so that either the bag

with the most red balls or the bag with the least red balls appeared first. We ran

this Limited Attention treatment on all 5-state information environments listed in

Table 9.

Two main predictions follow. First, participants will channel their attention and

click on the representative state first. In other words, upon observing a blue (red)

ball, the most likely first-click will be on the bag with the most blue (red) balls.

Second, fixing the information environment, taxing attentional resources will increase

overreaction in the Limited Attention treatment relative to the Baseline Attention

treatment.

To examine the first prediction, Fig. 7 shows the distribution of first-clicks across

all trials. Notably, even though the order of states was randomized, participants

were much more likely to channel their attention—proxied by first-click—to the most

representative state. The difference is stark: the representative state was three times

more likely to be clicked first relative to the second-highest alternative (p < .001).

The fact that the representative state varied with the realized signal and the random

ordering rules out that this result is driven by an information-independent heuristic

(e.g., always click on the left-most bag).

To examine the second prediction, Column 1 of Table 6 regresses the overreaction

ratio on whether participants were in the Limited Attention or Baseline Attention

version of the 5-state treatment. We find that overreaction was indeed significantly

higher in the former than the latter. This is further illustrated in Fig. 8a, which

shows that overreaction was higher in the Limited Attention treatment across nearly

all signal diagnosticities.

35The use of click data as a proxy for channeled attention has been validated using eye-tracking
tools (Meißner, Decker, and Pfeiffer 2010).
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(a) State 1 Representative (b) State 5 Representative

Figure 7. Most participants click on representative state first

We examine participant heterogeneity by looking at whether those who are more

prone to the representativeness heuristic—proxied by their propensity to click the

representative state first—also overreact more. Restricting attention to the Lim-

ited Attention treatment, Column 2 of Table 6 regresses the overreaction ratio on

whether the participant clicked on the representative state versus a different state

first. We find that the former group displayed significantly higher overreaction than

the latter. This is illustrated in Fig. 8b, which shows that overreaction was substan-

tially higher in the representative-state-first group across all signal diagnosticities.

Taken together, these results support the two predictions outlined above, and pro-

vide further evidence against insensitivity and information-independent heuristics as

alternative explanations for our results.

Table 6. Limited attention increases overreaction

Overreaction Ratio
(1) (2)

Limited Attention 0.179∗∗

(0.0551)

Click rep. state first 0.377∗∗∗

(0.0520)

Constant 0.249∗∗∗ 0.156∗∗∗

(0.0284) (0.0458)
Observations 4379 1740
Adjusted R2 0.012 0.036

Notes: Constant is the Baseline Attention treatment in Column 1
and first-click on a non-representative state in Column 2. Includes
all information environments with five states listed in Table 9;
excludes wrong direction updates. Standard errors clustered at
the individual level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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(a) Overreaction by attention treatment (b) Overreaction by first click

Figure 8. Limited attention increases overreaction

Finally, we provide further evidence for the proposed mechanism by structurally

estimating the parameters in the Limited Attention treatment and comparing them to

those obtained in the Baseline Attention treatment. Table 7 shows that the estimate

of θ increases from 0.99 to 1.26, while the estimates of λ are similar between the two

treatments. This lends direct support to our prediction that decreasing attentional

resources through the Mouselab paradigm increases reliance on the representativeness

heuristic (as indicated by higher θ), while leaving the level of cognitive imprecision

unchanged.

Table 7. Limited attention increases representativeness θ

θ 95% CI λ 95% CI
Limited Attention 1.26 (1.16, 1.38) 0.74 (0.72, 0.76)

Baseline Attention 0.99 (0.92, 1.08) 0.73 (0.72, 0.74)

Notes: This table compares the parameter estimates that minimize the average KL
divergence at the aggregate level for the limited attention treatment and the baseline
attention treatment. Includes all information environments with 5 states listed in Ta-
ble 9; excludes wrong direction updates. The 95% confidence intervals are obtained
from 300 bootstrap samples.

4 Evaluating Model Performance

To evaluate the performance of our two-stage model of belief formation, we com-

pute its completeness and restrictiveness following the methodology developed by

Fudenberg et al. (2022, 2023). We then compare the performance of our model to a

one-stage model of either only cognitive noise or only representativeness. We refer to

these comparison models as the cognitive-noise-only model and representativeness-

only model, respectively.
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4.1 Completeness

We define model completeness as follows. Similar to the structural estimation in

Section 3.4, we measure the prediction loss of a model by the KL divergence of the

reported posterior from the predicted posterior. Let eB denote the expected predic-

tion loss relative to the Bayesian prediction. Let eM denote the minimum expected

loss relative to the prediction of model M ∈ {T,N,R}, where M = T corresponds to

our two-stage model, M = N corresponds to the cognitive-noise-only model (θ = 0),

M = R corresponds to the representativeness-only model (λ = 1), and the minimum

is taken with respect to all feasible values of the model parameter(s). Finally, let

e∗ denote the minimum expected loss relative to the best possible prediction. The

completeness of model M is given by

κM ≡ eB − eM

eB − e∗
∈ [0, 1]. (12)

That is, a model M is 0% complete if it predicts no better than Bayesian updating

and 100% complete if predicts as accurately as the best prediction.

Intuitively, completeness is a measure of how much of the explainable variation in

data a model captures. It is distinct from the R-squared statistic typically reported

for a regression analysis. As pointed out by Fudenberg et al. (2022), completeness

measures whether a model captures regularities in the data, while R-squared cap-

tures the overall prediction error of the model, which could stem from either missing

regularities or intrinsic, irreducible noise. A model could have high completeness but

low R-squared—this would indicate that it successfully captures key regularities in

the data but the environment is noisy.

Estimating completeness requires an estimate of e∗. As Fudenberg et al. (2022),

we use ten-fold cross-validation to compute such an estimate. Estimates of eB and

eM are straightforward to derive from the model and data. For this analysis, we

do not exclude trials in which participants update in the wrong direction so as to

capture the full extent of model fit to the data.

We first estimate completeness in the simple information environments with two

states. As shown in Table 8, the cognitive-noise-only model (M = N) achieves

essentially 100% completeness. In these simple environments, the addition of the

editing stage does not yield any further improvement in model performance. This is

consistent with our conjecture that the representativeness heuristic is used to respond

to complexity, and therefore adds little explanatory power in simple environments.

However, increasing the complexity of the state space to three or more states

decreases the completeness of the cognitive-noise-only model to a mere 36%. The

representativeness-only model (M = R) also has little explanatory power in these

more complex information environments. Yet taken together, the two-stage model

with both psychological processes achieves a very high completeness—it captures
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92% of the explainable variation in the data, relative to Bayes’ rule. This shows that

the two processes are critical cognitive complements in determining belief-updating

in complex environments.

Taken together, while the cognitive-noise-only model effectively explains belief-

updating in simple environments—potentially explaining its prominent role in orga-

nizing data from laboratory experiments that primarily use binary state spaces—the

model’s explanatory power declines rapidly in more complex settings. The inter-

action between representativeness and noisy cognition is key for our model’s high

explanatory power in complex environments.

Table 8. Completeness and Restrictiveness

Completeness Restrictiveness
2 states > 2 states 2 states > 2 states

Two-Stage Model 1.00 0.92 0.73 0.91
(0.15) (0.05) (0.00) (0.00)

Cognitive-noise-only Model 1.00 0.36 0.76 0.97
(0.06) (0.02) (0.00) (0.00)

Representativeness-only Model 0.00 0.00 1.00 1.00
(0.15) (0.04) (0.00) (0.00)

Notes: Includes all information environments listed in Table 9 except for the 11-state com-
plexity; includes wrong direction updates. Restrictiveness is estimated from 1000 simulations.

4.2 Restrictiveness

While our two-stage model has high completeness, the inclusion of an additional pa-

rameter could make the model so flexible that it could explain almost any dataset.

To rule this out, we next estimate a measure of the two-stage model’s restrictiveness

using randomly generated synthetic belief data. We then compare the average pre-

diction loss of the two-stage model on the synthetic dataset to the average prediction

loss of Bayes’ rule on this dataset. Intuitively, the model is too flexible if it has a

good fit on the synthetic data relative to Bayes’ rule.

Following Fudenberg et al. (2023), we randomly generate 1000 mappings, where

each mapping assigns a posterior distribution over the state space to each information

environment from our experimental set (see Table 9) and each signal realization

si ∈ {b, r}. We draw mappings uniformly from an ‘admissible’ set of mappings that

satisfy basic directional and monotonicity properties.36 These properties hold for

Bayes’ rule and other common models of belief-updating. We impose such properties

to ensure that our synthetic data is ‘reasonable’ belief data—without such restrictions

36For example, we require mappings to satisfy the property that the posterior probability of a
state weakly increases in the signal diagnosticity of that state. At a more basic level, we require
each posterior distribution in the mapping to in fact be a probability distribution, i.e., it assigns a
number between 0 and 1 to each state and sums to one across states.
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on the admissible set, any model that satisfies such basic properties could have high

restrictiveness on a synthetic dataset, even if it is in fact quite flexible. Evaluating

the restrictiveness of a model with respect to this ‘admissible’ synthetic data provides

a sense of the additional restrictions on belief-updating imposed by the model.

Let dB denote the expected distance of the synthetic mapping from the Bayesian

prediction, where distance is measured by the KL divergence and the expectation is

taken with respect to the uniform distribution over the admissible set. Analogously,

let dM denote the minimal expected distance of the synthetic mapping from the

prediction of model M , where the minimum is taken with respect to the parameter(s)

of model M . The restrictiveness of model M is defined by the ratio of these two

expected distances,

ρM ≡ dM

dB
∈ [0, 1]. (13)

That is, a model is 0% restrictive if it fits synthetic data perfectly—the KL divergence

of the synthetic mapping from the best fit of the model is zero—and 100% restrictive

if it fits synthetic data no better than Bayes’ rule—the KL divergence of the synthetic

mapping from the best fit of the model is equal to the KL divergence of the synthetic

mapping from Bayes’ rule.

As indicated in Table 8, the two-stage model has high restrictiveness in simple

information environments with two states (0.73), and very high restrictiveness in

complex information environments with more than two states (0.91). Moreover, it has

similar restrictiveness to the cognitive-noise-only model (0.73 versus 0.76 for simple

environments and 0.91 versus 0.97 for more complex environments). This shows that

the substantially higher explanatory power of the two-stage model relative to the

cognitive-noise-only model does not come at the expense of a significant increase in

flexibility.

While the representativeness-only model is more restrictive than the two-stage

model in simple environments (1.00 versus 0.73), it is also very incomplete relative

to the two-stage model. In complex environments, it has similar restrictiveness to

the two-stage model (1.00 versus 0.91), but still features very low completeness.

Therefore, although the representativeness-only model is as restrictive as Bayes’ rule,

it also adds little explanatory power relative to Bayes’ rule. In contrast, the two-stage

model has both high restrictiveness and high completeness—it is almost as restrictive

as Bayes’ rule while adding significant explanatory power relative to Bayes’ rule.

To visualize the trade-off between explanatory power and flexibility, Fig. 9 plots

the completeness and restrictiveness of the two-stage model, the cognitive-noise-only

model and the representativeness-only model in complex information environments

with more than two states. As the figure illustrates, once we go beyond a simple

environment with two states, incorporating responses to complexity into a model of
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Figure 9. Completeness-restrictiveness trade-off (> 2 states)

belief-updating leads to a striking increase in explanatory power while only minimally

increasing the model’s flexibility.

5 Under- and Overreaction in Prior Work

In this section, we relate our findings to the theoretical and empirical literature on

under- and overreaction. We primarily focus on settings where agents observe one

signal draw, but also briefly discuss settings where agents observe multiple draws.

Laboratory studies. The key contribution of our paper is to explicitly consider

how complexity of the information environment impacts belief-updating. As previ-

ously noted, the vast majority of laboratory experiments focus on a simple 2-state

setting. Benjamin (2019) presents a meta-analysis of experiments with a binary

state space, symmetric signal diagnosticity, and uniform prior, and finds that people

generally underreact to information.

There are several noteworthy studies that do use more than two ‘bags’ in the

design. Phillips and Edwards (1966) conduct ‘bookbag-and-poker-chip’ experiments

in which the number of bags is increased to 10. However, there are only two unique

states: each bag of N chips has either x red chips or N − x red chips, with the

remaining chips blue. Thus, this experiment is equivalent to varying the prior rather

than expanding the state space. Consistent with our prediction, they predominantly

find underreaction. Hartzmark, Hirshman, and Imas (2021) explore how people learn

about owned versus non-owned goods. Their design features a uniform prior and 8

states, where each state is associated with a distinct signal distribution. Consistent

with our framework, the authors document overreaction. But they do not explore

how the size of the state space impacts the level of overreaction—their focus is on dif-

ferences in belief-updating as a function of ownership. Prat-Carrabin and Woodford
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(2022) find underreaction in an environment with a continuous state space [0, 1] and

uniform prior. Relating this result to our complexity predictions requires a model

of how complexity is perceived for an uncountable state space. For example, par-

ticipants may partition the state space into a finite set of intervals, with complexity

corresponding to the cardinality of the partition. A partition into states that are

greater or less than 0.5 would have the same complexity as a binary state space in

our framework, predicting underreaction. A continuous state space may also prompt

a different cognitive default. To test for this possibility, we ran a study that elicited

the cognitive default in a ‘continuous’ version of our setting (N = 100).37 Indeed,

in contrast to a discrete state space, participants reported a cognitive default that

placed substantially more weight on middle states relative to extreme states—similar

to a (truncated) normal distribution. This difference in cognitive defaults could ex-

plain the underreaction they found in the continuous state space setting versus the

overreaction we find in complex discrete state space settings.

In recent related work, Fan, Liang, and Peng (2023) show that people underin-

fer when making inferences after observing information and overinfer when forming

forecasts about future information. Their main treatment featured a binary state

space (a firm was either good or bad) and a discretized normal signal distribution

(the firm’s stock price growth this month). Over half of participants underreacted

when asked to report their posterior about the firm’s state and over half overreacted

when asked to report their prediction of the next signal (the stock price growth next

month). Our framework predicts such an inference-forecast gap in their environment:

the state space is binary in the inference task but more complex in the forecasting

task, since it involves considering a large space of potential signal realizations.38 In

addition, the current signal is more informative about the state than about the next-

period signal, which also predicts more underreaction in the inference task relative

to the forecasting task. Afrouzi, Kwon, Landier, Ma, and Thesmar (2023) also find

overreaction in an experiment where the forecast variable has a complex state space.

Researchers have also studied how changes in signal diagnosticity affect belief-

updating. Consistent with our predictions and empirical results, several studies have

found that people exhibit greater underreaction to more precise signals. Edwards

(1968) ran studies with a binary state space, uniform prior, and symmetric infor-

mation structures with signal diagnosticities di ∈ {0.55, 0.7, 0.85}. When the signal

was less precise (di = 0.55), subjects exhibited overreaction; as the diagnosticity

increased, they exhibited more underreaction.39 Kieren and Weber (2020) find un-

37The state space consisted of a set of bags ordered along the unit interval, where the state
corresponded to the probability of drawing a red ball. We used the same method as in Section 3 to
elicit the cognitive default.

38As discussed further below, the inherent complexity in forecasting can explain the prevalence
of overreaction in that domain more generally.

39Similar patterns are documented in Phillips and Edwards (1966); Peterson, Schneider, and
Miller (1965); Kahneman and Tversky (1972); Grether (1992); Holt and Smith (2009); Benjamin
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derreaction to informative signals and overreaction to uninformative signals. Recent

work by Augenblick et al. (2022) argues that this comparative static is consistent with

a model of noisy cognition. Their paper complements our framework by extending

the way in which cognitive noise can generate overreaction. They consider a simple

two-state setting where the agent forms a noisy representation of the signal diagnos-

ticity, and show that this predicts underreaction to precise signals and overreaction

to sufficiently noisy signals. Our model generates the same comparative static on

diagnosticity, but it stems from both representativeness and cognitive imprecision.

Our results also relate to findings on how the prior impacts belief-updating. A

large body of work has shown that people are generally insensitive to base rates

(e.g., Kahneman and Tversky (1973); Green, Halbert, and Robinson (1965); Grether

(1992); Robalo and Sayag (2018)). However, as outlined in Prediction 4, whether

base-rate neglect generates under- or overreaction depends on whether the signal re-

alization is confirmatory or disconfirmatory. Holt and Smith (2009) vary the prior

in a 2-state setting. In line with our findings, they show that when the prior is more

asymmetric and a disconfirmatory realization is observed, people overreact; in con-

trast, following a confirmatory realization or under a more symmetric prior, people

underreact. Kieren, Müller-Dethard, and Weber (2022) find that investors system-

atically overreact to disconfirmatory information in both experiments and financial

market data.

A line of work explores belief-updating when agents observe multiple signals

drawn from the same distribution. Griffin and Tversky (1992) find that people focus

too much on the strength of evidence (e.g., sample proportions of each signal real-

ization) and not enough on the weight (e.g., sample size). Massey and Wu (2005)

find that people tend to neglect the possibility of a regime shift in a setting where

the signal distribution probabilistically changes across time. This leads to under-

or overreaction depending on the probability of a shift and the precision of the sig-

nal. Observing multiple signal draws introduces additional channels of bias that are

outside of our framework. In future work, it would be interesting to explore how

simplification heuristics and cognitive imprecision interact in such dynamic environ-

ments.

Our paper contributes to the theoretical literature that seeks to explain the preva-

lence of underreaction in laboratory studies. Phillips and Edwards (1966) propose

that people suffer from conservatism bias: they underweight the likelihood ratio of

the signal, which leads to underreaction. Benjamin, Rabin, and Raymond (2016) pro-

pose that people have extreme-belief aversion, i.e., an aversion to holding beliefs close

to certainty. As pointed out by DuCharme (1970), both conservatism and extreme-

(2019). When the information structure is asymmetric, a similar pattern holds: agents tend to
overreact when diagnosticities are close together (and thus close to 0.5) and underreact when they
are further apart. See Peterson et al. (1965); Ambuehl and Li (2018).
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belief aversion can lead to underreaction when the signal is precise. As discussed in

Section 2, a model of noisy cognition also predicts underreaction (Woodford 2020).40

Financial markets. A growing literature in finance and macroeconomics uses sur-

veys and forecasts by professionals and households to study departures from rational

expectations (see Bordalo et al. (2022) for review). A common approach is to exam-

ine the predictability of forecast errors from forecast revisions (Coibion and Gorod-

nichenko 2015).41 In contrast to the experimental findings, this research typically

finds that people overreact to information. For example, Bordalo et al. (2020) ana-

lyze time series data on a large group of financial and macro variables and individual

forecasts from professionals. They find that forecasts for the vast majority of these

variables exhibit overreaction.42 d’Arienzo (2020) and Wang (2021) find that indi-

vidual analysts’ forecasts of long-term interest rates exhibit overreaction. Bordalo

et al. (2019) find overreaction in the expectations of long-term corporate earnings

growth.

A workhorse theory in the financial literature is the diagnostic expectations model,

where agents overreact to information due to a reliance on the representativeness

heuristic (Bordalo et al. 2019, 2020). For example, Kwon and Tang (2021) show that

such a model can explain overreaction to extreme corporate events and underreaction

to non-extreme events. Our two-stage model incorporates the underlying psychology

of the diagnostic expectations model into the ‘evaluation’ stage.

Our results can potentially reconcile the seemingly contradictory findings in the

lab versus observational data. A prominent feature of real-world settings is that

decision-makers tend to face much more complex information environments and nois-

ier signals than in the lab. Consistent with the empirical results, our framework thus

predicts that we should expect overreaction in these real-world settings. On the

other hand, as noted above, laboratory studies tend to focus on simple binary state

spaces and relatively informative signals. Again consistent with the findings in this

literature, our framework predicts that we should see underreaction in these simple

environments.

One important thing to note is that we focus on studies that collect belief data

(either by eliciting them directly or through forecasts and surveys). A related lit-

erature starting with Ball and Brown (1968) and De Bondt and Thaler (1985) has

40A similar reduced form updating rule is found in Epstein, Noor, Sandroni et al. (2010), which
considers the implication of underreaction on asymptotic learning.

41Augenblick and Rabin (2021) develop an alternative statistical test of under- and overreac-
tion by exploiting the equivalence between the expected movement in beliefs and the expected
uncertainty reduction for Bayesian learners. Greater (lesser) actual belief movement, relative to
uncertainty reduction, is indicative over- (underreaction).

42In addition to identifying overreaction in individual forecasts, Bordalo et al. (2020) also docu-
ment underreaction in consensus forecasts. They explain this underreaction with a model in which
forecasters do not respond to other forecasters’ information. The underreaction we identify dif-
fers in that it stems from cognitive noise at the individual level rather than a lack of information
integration across forecasters.
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examined under- and overreaction by looking at choice data—specifically, price move-

ments. Prices have been found to adjust slowly to firm-specific (Ball and Brown 1968)

and macro (Klibanoff et al. 1998) announcements, and to display short-term auto-

correlation (i.e., momentum); these effects have been interpreted as underreaction

(Hirshleifer, Lim, and Teoh 2009; Daniel et al. 1998). Prices also display long-term

negative autocorrelation, which has been interpreted as overreaction. However, it is

not clear whether price responses are driven by preferences or beliefs. For example,

Frazzini (2006) shows that the slow price adjustment to earnings announcements—the

famous post-earnings announcement drift (PEAD)—is consistent with the disposi-

tion effect, which has been explained through prospect theory preferences (Barberis

2012; Heimer, Iliewa, Imas, and Weber 2021). Charles, Frydman, and Kilic (2023)

show that noisy cognition can weaken the link between beliefs and behavior, such

that overreaction in the former can still generate underreaction in the latter. Since

our paper focuses on belief-updating, we do not attempt to apply our framework to

behavior.

6 Conclusion

This paper examines the incidence and underlying drivers of under- and overreaction.

A key contribution of our framework is the two-stage model of belief-updating, which

allows for the interaction between multiple psychological mechanisms. We empirically

show that representativeness and cognitive noise are cognitive compliments and their

interaction plays a crucial role in explaining how agents update beliefs across learning

environments. While the majority of papers in psychology and behavioral economics

have focused on identifying the implications of a single psychological mechanism, it

is likely the case that observed judgments and choice are the product of multiple

mechanisms. Our results show that heuristics do not just operate independently

but also reinforce one another in important ways. This suggests that modeling and

testing more ‘unified’ frameworks across economically-important domains is a fruitful

area for further research.

Another contribution of our framework is explicitly consider the complexity of the

learning environment as an important determinant of belief-updating. We empiri-

cally show that complexity leads agents to simplify the information structure, which

impacts the form of bias that emerges. While we focus on the complexity of the state

space, other aspects of the learning environment—such as the signal space or num-

ber of signal draws—can also vary in complexity. This suggests that modeling and

testing how agents simplify other types of complexity when interpreting and using

information is an important area for future research.
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A Proofs

Proof of Claim in Footnote 14. We show that our definition of overreaction

based on Definition 1 is equivalent to the binary state definition stated in Footnote 14.

Fix any signal realization si. Note that∣∣∣Ê (ω|si)− E (ω)
∣∣∣ = |ω2 (p̂ (ω2|si)− p (ω2)) + ω1 (p̂ (ω1|si)− p (ω1))|

= |ω2 (p (ω1)− p̂ (ω1|si)) + ω1 (p̂ (ω1|si)− p (ω1))|
=|ω2 − ω1| · |p̂ (ω1|si)− p (ω1) |,

where p̂ is the subjective posterior following signal realization si, and similarly

|E (ω|si)− E (ω)| = |ω2 − ω1| · |p (ω1|si)− p (ω1) |,
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where p is the objective posterior following signal realization si. Hence,

r(si) =
|Ê(ω|si)− E(ω)| − |E(ω|si)− E(ω)|

|E(ω|si)− E(ω)|

=
|p̂(ω1|si)− p(ω1)| − |p(ω1|s)− p(ω1)|

|p(ω1|si)− p(ω1)|
.

That is, r(si) > 0 if and only if |p̂(ω1|si)− p(ω1)| > |p(ω1|si)− p(ω1)|, and similarly

for ω2.

Proof of Prediction 1. Suppose the signal realization is s2. The objective poste-

rior of any state ωi ∈ Ω is

p(ωi|s2) =
p0(ωi)ωi∑

ωj∈Ω p0(ωj)ωj

=
2ωi

N

We can write the Bayesian expected state as

E(ω|s2) =
∑
ωi∈Ω

p(ωi|s2)ωi =
2

N

∑
ωi∈Ω

ω2
i

Suppose Ω contains an even number of states and N = 2K, then

E(ω|s2)− E(ω) =
2

N

∑
ωi∈Ω

ω2
i −

1

2

=
2

N

[
(1− ωN)

2 + ...+ (1− ωK+1)
2 + ω2

K+1 + ...+ ω2
N − K

2

]
=

4

N

[(
ωK+1 −

1

2

)2

+ ...+

(
ωN − 1

2

)2
]
.

When Ω contains an odd number of states and N = 2K − 1, symmetry implies that

theKth state must be 1
2
. We therefore obtain the same expression for E(ω|s2)−E(ω).

On the other hand,

ER(ω|s2) =
∑
ωi∈Ω

pR(ωi|s2)ωi =
∑
ωi∈Ω

p0(ωi)ω
θ+2
i∑

ωj∈Ω p0(ωj)ω
θ+1
j

=

∑
ωi∈Ω ωθ+2

i∑
ωi∈Ω ωθ+1

i

.

Note that ER(ω|s2) converges to the most representative state as θ goes to infinity.

That is, limθ→∞ ER(ω|s2) = ωN . It follows that

lim
θ→∞

rR(s2) + 1 = lim
θ→∞

|ER(ω|s2)− E(ω)|
|E(ω|s2)− E(ω)|

=
ωN − 1

2

4
N

[(
ωK+1 − 1

2

)2
+ ...+

(
ωN − 1

2

)2] . (14)
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A similar expression to Eq. (14) with respect to Ω′ holds for r′(s2). Since Ω′ is

equally dispersed as Ω, ω′
N = ωN . Since Ω′ is more complex than Ω and every state

in Ω′ \Ω is more interior than every state in Ω,

4

N ′

[(
ω′
K+1 −

1

2

)2

+ ...+

(
ω′
N ′ −

1

2

)2
]
<

4

N

[(
ωK+1 −

1

2

)2

+ ...+

(
ωN − 1

2

)2
]
.

Therefore, when θ is sufficiently large, it follows from Eq. (9) that r′(s2) > r(s2).

The proof is analogous for signal realization s1. □

Proof of Prediction 2. As in the proof of Prediction 1, we can show that

lim
θ→∞

rR(s2) + 1 = lim
θ→∞

|ER(ω|s2)− E(ω)|
|E(ω|s2)− E(ω)|

=
ωN − 1

2

4
N

[(
ωK+1 − 1

2

)2
+ ...+

(
ωN − 1

2

)2] ,
and analogously for r′(s2). Fixing ωK+1, ..., ωN−1, the above expression is increasing

in ωN if
(
ωN − 1

2

)2
<

(
ωK+1 − 1

2

)2
+ ...+

(
ωN−1 − 1

2

)2
, i.e., W (Ω) < 0, and decreasing

in ωN if
(
ωN − 1

2

)2
>

(
ωK+1 − 1

2

)2
+ ...+

(
ωN−1 − 1

2

)2
, i.e., W (Ω) > 0. The proof is

analogous for signal realization s1. □

Proof of Corollary 1. It follows from Prediction 2 that r(si) decreases as the

signal diagnosticity d increases when θ is sufficiently large. Below we show that this

holds for any θ > 0. Given any si, note that

rR(si) + 1 =
|ER(ω|si)− E(ω)|
|E(ω|si)− E(ω)|

=

(1−ω2)θ+2+ωθ+2
2

(1−ω2)θ+1+ωθ+1
2

− 1/2

(1− ω2)2 + ω2
2 − 1/2

=
ωθ+1
2 − (1− ω2)

θ+1

2(ω2 − 1/2)((1− ω2)θ+1 + ωθ+1
2 )

.

Therefore, rR(si) is decreasing in ω2 if and only if f(x) ≡ (x−1/2)((1−x)θ+1+xθ+1)
xθ+1−(1−x)θ+1 is

increasing in x when x > 1/2. Differentiating f(x), we have

f ′(x) =
xθ+1(xθ+1 − (θ + 1)(1− x)θ)− (1− x)θ+1((1− x)θ+1 − (θ + 1)xθ)

(xθ+1 − (1− x)θ+1)2
.

Note that the numerator can be written as g(x)−g(1−x), where g(x) ≡ xθ+1(xθ+1−
(θ + 1)(1− x)θ). Since g(x) is increasing in x, it follows that f ′(x) > 0 for x > 1/2.

Since d = ω2, by Eq. (9), r(si), we know that r(si) is decreasing in d for all si ∈ S.
When ω2 approaches 1, we have limω2→1 rR(si)+1 = 1. By Eq. (9), r(si) converges

to −(1 − λ), which is negative when λ < 1. Hence, there exists a cutoff c ∈ [1/2, 1)

such that the agent underreacts to all signals if d ∈ (c, 1). When ω2 approaches 1/2,
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by the L’Hospital’s Rule, we have

lim
ω2→1/2

rR(si) + 1 = lim
ω2→1/2

(θ + 1)(ωθ
2 + (1− ω2)

θ)

2((1− ω2)θ+1 + ωθ+1
2 )

= θ + 1.

Therefore, we have limω2→1/2 r(si) = λ(θ + 1)− (1− λ) > 0 when θ > (1− λ)/λ− 1.

It follows that c > 1/2 when θ is sufficiently large. □

Proof of Corollary 2 When Ω and Ω′ contain no more than three states, Corol-

lary 2 immediately follows from Prediction 2. When |Ω| = |Ω′| ≥ 4, we construct a

state space Ω′′ = {ω1, ω
′
2, ..., ω

′
N−1, ωN}, where states ω1 and ωN come from Ω and

ω′
2, ..., ω

′
N−1 come from Ω′. Let p′′0 = p0. By Prediction 1, we know that the agent

reacts more in (Ω′′, p′′0) than under (Ω, p0). Since Ω′ is less dispersed than Ω′′ and

W (Ω′′) > W (Ω′) > 0, by Prediction 2, we know that the agent reacts more in (Ω′, p′0)

than in (Ω′′, p′′0). It then follows that the agent reacts more in (Ω′, p′0) than in (Ω, p0).

□

Proof of Prediction 3. Suppose p′0 is strictly more concentrated than p0 and

both are symmetric. Let ω′ and ω denote the random variables that are distributed

according to p′0 and p0, respectively. Since the priors have the same support, ER(ω
′|si)

coincides with ER(ω|si) when θ diverges to infinity. Thus, to show that r′(si) > r(si)

when θ is sufficiently large, it suffices to show that |E(ω′|si) − E(ω′)| < |E(ω|si) −
E(ω)|.

Suppose the signal realization is s2. Since E(ω′|s2) > 1/2, E(ω|s2) > 1/2, and

E(ω′) = E(ω) = 1/2, we only need to show E(ω′|s2) < E(ω|s2). Let∆(ωi) = p′0(ωi)−
p0(ωi). Then ∆(ωi) ≥ 0 for ωi ∈ [1 − c, c] and ∆(ωi) ≤ 0 for ωi ∈ [0, 1 − c] ∪ [c, 1],

and at least one inequality is strict. We have

E(ω′|s2) = 2
∑
ωi∈Ω

p′0(ωi)ω
2
i = E(ω|s2) + 2

∑
ωi∈Ω

∆(ωi)ω
2
i .

Since ∆(ωi) is symmetric around 1/2,∑
ωi∈Ω

∆(ωi)ω
2
i =

∑
ωi<1−c

∆(ωi)ω
2
i +

∑
ωi∈(1−c,c)

∆(ωi)ω
2
i +

∑
ωi>c

∆(ωi)ω
2
i

=2
∑

ωi∈(1/2,c)

∆(ωi)(ωi − 1/2)2 + 2
∑

ωi∈[c,1)

∆(ωi)(ωi − 1/2)2 < 0,

where the inequality holds because |ωi − 1/2| < |ωj − 1/2| for any ωi ∈ (1/2, c)

and ωj ∈ (c, 1). Therefore, E(ω′|s2) < E(ω|s2). The proof is analogous for signal

realization s1. □

Proof of Prediction 4. For convenience, we denote the binary state space as

Ω = {1− x, x} where x > 1/2 and the prior as (1− p0, p0).

Part (i). First assume p0 > 1/2 and consider a confirmatory realization si. We
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have

E(ω) = 1/2, (15)

E(ω) = (1− p0)(1− x) + p0x, (16)

E(ω|si) =
(1− p0)(1− x)2 + p0x

2

(1− p0)(1− x) + p0x
, (17)

ER(ω|si) =
(1− p0)(1− x)θ+2 + p0x

θ+2

(1− p0)(1− x)θ+1 + p0xθ+1
. (18)

The agent has a wrong direction update at si if Ê(ω|si)−E(ω) < 0, which occurs if

and only if

λER(ω|si) + (1− λ)E(ω) < E(ω).

By Eqs. (15) to (18), the above inequality simplifies to the following,

p0x
θ+1 − (1− p0)(1− x)θ+1

p0xθ+1 + (1− p0)(1− x)θ+1
<

2p0 − 1

λ
. (19)

The agent overreacts to si if Ê(ω|si) > E(ω|si), which occurs if and only if

λER(ω|si) + (1− λ)E(ω) > E(ω|si).

This inequality simplifies to the following,

p0x
θ+1 − (1− p0)(1− x)θ+1

p0xθ+1 + (1− p0)(1− x)θ+1
>

1

λ

p0x− (1− p0)(1− x)

p0x+ (1− p0)(1− x)
. (20)

The agent underreacts to si if E(ω) < Ê(ω|si) < E(ω|si), which occurs if and only if

2p0 − 1

λ
<

p0x
θ+1 − (1− p0)(1− x)θ+1

p0xθ+1 + (1− p0)(1− x)θ+1
<

1

λ

p0x− (1− p0)(1− x)

p0x+ (1− p0)(1− x)
. (21)

Let t ≡ x/(1−x) > 1 and ℓ(t) ≡ p0t−(1−p0)
p0t+(1−p0)

. Then ℓ(t) is increasing in t. By Eqs. (19)

to (21), a wrong direction update occurs if ℓ(tθ+1) < 2p0−1
λ

, underreaction occurs if
2p0−1

λ
< ℓ(tθ+1) < ℓ(t)

λ
, and overreaction occurs if ℓ(tθ+1) > ℓ(t)

λ
.

First note that limt→1 ℓ(t
θ+1) = 2p0 − 1 and limt→∞ ℓ(tθ+1) = 1. Since ℓ(s) is

increasing, if λ ≤ 2p0 − 1, then the agent updates in the wrong direction for all

values of x. If λ > 2p0 − 1, then there exists a cutoff c1 ∈ (1/2, 1) such that

ℓ((c1/(1 − c1))
θ+1) = 2p0−1

λ
and the agent updates in the wrong direction for all

x ∈ (1/2, c1).

Second, note that

ℓ(tθ+1)

ℓ(t)
=
(p0t+ (1− p0))(p0t

θ+1 − (1− p0))

(p0t− (1− p0))(p0tθ+1 + (1− p0))
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=1 +
2

p20t
θ+2−(1−p0)2

p0(1−p0)(tθ+1−t)
− 1

.

It is then easy to show that when p0 > 1/2, the ratio ℓ(tθ+1)/ℓ(t) is first increasing and

then decreasing in t. Since 2p0−1
λ

= ℓ((c1/(1 − c1))
θ+1) < ℓ(c1/(1−c1))

λ
, by continuity

we have 2p0−1
λ

< ℓ(tθ+1) < ℓ(t)
λ

for t strictly larger than but sufficiently close to

c1/(1 − c1). Furthermore, for t sufficiently large, both ℓ(tθ+1) and ℓ(t) are close to

1, so we must have 2p0−1
λ

< ℓ(tθ+1) < ℓ(t)
λ

for λ < 1. Lastly, notice that for any

λ > 2p0 − 1, we have 1
λ
limt→1 l(t) =

2p0−1
λ

< limt→1 limθ→∞ l(tθ+1) = 1. Therefore,

if θ sufficiently large, there exists an x close to 1/2 such that the agent overreacts.

Combining these observations, we know that there exist c1 ≤ c2 ≤ c3 ≤ 1 such that

the agent underreacts when x ∈ (c1, c2) ∪ (c3, 1), overreacts when x ∈ (c2, c3), and

(c2, c3) is non-empty if θ is sufficiently large.

Part (ii). Next assume p0 < 1/2 and consider a disconfirmatory realization

si. Then E(ω|si) > E(ω). As in Part (i), a wrong direction update occurs if

ℓ(tθ+1) < 2p0−1
λ

, underreaction occurs if 2p0−1
λ

< ℓ(tθ+1) < ℓ(t)
λ
, and overreaction

occurs if ℓ(tθ+1) > ℓ(t)
λ
. Since l(t) is increasing, ℓ(tθ+1) > ℓ(1) = 2p0 − 1 > 2p0−1

λ
,

so a wrong direction update is impossible. It remains to determine whether the

agent overreacts or underreacts by comparing ℓ(tθ+1) and ℓ(t)
λ
. Let c4 = 1 − p0.

Then ℓ(c4/(1 − c4)) = 0. Note that when t < c4/(1 − c4), we have ℓ(t) < 0 and

thus ℓ(t)
λ

< ℓ(t) < ℓ(tθ+1). That is, the agent overreacts when x ∈ (1/2, c4). When

t > c4/(1 − c4), we have ℓ(t) > 0 and ℓ(tθ+1) > 0. Moreover, when t is sufficiently

large, both ℓ(tθ+1) and ℓ(t) are close to 1, which implies that ℓ(tθ+1) < ℓ(t)/λ and

so the agent underreacts. Therefore, there exists a cutoff c5 ∈ (c4, 1) such that the

agent underreacts if x ∈ (c5, 1). □

B Additional Details and Analyses

B.1 Experimental Details

Table 9. Information environments used in experiments

Complexity |Ω| Prior p0 Information Structure Ω

2 states p0(ω1) ∈ {0.3, 0.5, 0.7} Pr(r|ω2) ∈ {0.6, 0.7, 0.8, 0.9}
p0(ω2) = 1− p0(ω1) Pr(r|ω1) = 1− Pr(r|ω2)

3 states p0(ω1) ∈ {0.25, 0.33, 0.4} Pr(r|ω3) ∈ {0.6, 0.7, 0.8, 0.9}
p0(ω2) = 1− 2p0(ω1) Pr(r|ω2) = 0.5

p0(ω3) = p0(ω1) Pr(r|ω1) = 1− Pr(r|ω3)

4 states p0(ωi) = 0.25 (Pr(r|ω3), P r(r|ω4)) ∈ {(0.55, 0.6),
∀ωi ∈ Ω (0.6, 0.7), (0.55, 0.7), (0.7, 0.8),

(0.6, 0.8), (0.55, 0.8), (0.8, 0.9),

(0.7, 0.9), (0.6, 0.9), (0.55, 0.9)}
Pr(r|ω2) = 1− Pr(r|ω3)
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Table 9. Information environments used in experiments

Complexity |Ω| Prior p0 Information Structure Ω

Pr(r|ω1) = 1− Pr(r|ω4)

5 states p0(ωi) = 0.2 (Pr(r|ω4), P r(r|ω5)) ∈ {(0.55, 0.6),
∀ωi ∈ Ω (0.6, 0.7), (0.55, 0.7), (0.7, 0.8),

(0.6, 0.8), (0.55, 0.8), (0.8, 0.9),

(0.7, 0.9), (0.6, 0.9), (0.55, 0.9)}
Pr(r|ω3) = 0.5

Pr(r|ω2) = 1− Pr(r|ω4)

Pr(r|ω1) = 1− Pr(r|ω5)

11 states p(ωi) = 1/11 Pr(r|ωi) = (i− 1)/10

∀ωi ∈ Ω ∀i ∈ {1, ..., 11}

Notes: States are ordered by number of red balls, with ω1 corresponding to the bag with the fewest

red balls, and so on up through ωN corresponding to the bag with the most red balls.
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B.2 Section 3.3 Analyses including Wrong Direction Updates

Table 10. Impact of complexity on belief updating

Overreaction Ratio

(1) (2)

4 States 0.274∗∗∗ 0.372∗∗∗

(0.0277) (0.0298)

5 States 0.364∗∗∗ 0.457∗∗∗

(0.0344) (0.0368)

d = 0.7 -0.159∗∗∗

(0.0383)

d = 0.8 -0.364∗∗∗

(0.0399)

d = 0.9 -0.470∗∗∗

(0.0415)

Constant -0.109∗∗∗ 0.139∗∗∗

(0.0199) (0.0379)

N 6714 6714

adj. R2 0.038 0.099

Notes: Baseline is 2 States and, in Column 2, diagnosticity

d = 0.6. Includes information environments with a uniform

prior and 2 states, 4 states or 5 states listed in Table 9; in-

cludes wrong direction updates. Standard errors clustered at

the individual level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 11. Impact of signal diagnosticity on belief updating

Overreaction Ratio

(1) (2) (3) (4)

2 States 3 States 4 States 5 States

d = 0.7 0.0458 -0.208∗∗∗ -0.381∗∗∗ -0.212∗∗∗

(0.0435) (0.0494) (0.0644) (0.0819)

d = 0.8 -0.0382 -0.414∗∗∗ -0.607∗∗∗ -0.436∗∗∗

(0.0449) (0.0470) (0.0680) (0.0826)

d = 0.9 -0.0546 -0.449∗∗∗ -0.683∗∗∗ -0.586∗∗∗

(0.0432) (0.0488) (0.0711) (0.0843)

Constant -0.0972∗∗ 0.528∗∗∗ 0.720∗∗∗ 0.677∗∗∗

(0.0421) (0.0540) (0.0738) (0.0905)

N 986 1404 2928 2800

adj. R2 0.005 0.068 0.117 0.065

Notes: Baseline is diagnosticity d = 0.6. Includes all information

environments with a uniform prior listed in Table 9 except for the

11-state complexity; includes wrong direction updates. Standard

errors clustered at the individual level in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

58



Table 12. Impact of prior concentration on belief updating

Overreaction Ratio

(1) (2)

Concentrated Prior 0.209∗∗∗ 0.209∗∗∗

(0.0529) (0.0529)

Diffuse Prior -0.219∗∗∗ -0.219∗∗∗

(0.0313) (0.0313)

d = 0.7 -0.303∗∗∗

(0.0312)

d = 0.8 -0.497∗∗∗

(0.0314)

d = 0.9 -0.549∗∗∗

(0.0317)

Constant 0.260∗∗∗ 0.597∗∗∗

(0.0250) (0.0389)

N 4220 4220

adj. R2 0.049 0.127

Notes: Includes all information environments with three states

listed in Table 9; includes wrong direction updates. Baseline is

uniform prior (0.33, 0.34, 0.33) and, in Column 2, diagnostic-

ity d = 0.6. Concentrated prior corresponds to (0.25, 0.5, 0.25)

and diffuse prior corresponds to (0.4, 0.2, 0.4). Standard errors

clustered at the individual level in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table 13. Impact of signal type on belief updating

Overreaction Ratio

(1) (2)

Confirmatory Realization 0.121∗∗∗ 0.136∗∗∗

(0.0384) (0.0392)

Disconfirmatory Realization 0.371∗∗∗ 0.348∗∗∗

(0.0442) (0.0412)

d = 0.7 -0.493∗∗∗

(0.0569)

d = 0.8 -0.590∗∗∗

(0.0565)

d = 0.9 -0.637∗∗∗

(0.0560)

Constant -0.109∗∗∗ 0.321∗∗∗

(0.0199) (0.0488)

N 2961 2961

adj. R2 0.022 0.093

Notes: Includes all information environments with two states listed

in Table 9; includes wrong direction updates. Baseline is uniform

prior (0.5, 0.5) and, in Column 2, diagnosticity d = 0.6. Standard

errors clustered at the individual level in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.3 Reported Posterior Beliefs

Fig. 10 presents the average reported posterior belief about each state and the

Bayesian posterior belief for information environments with a uniform prior listed

in Table 9. For a given realized signal and information structure, the dots with

95% error bars show the average reported posteriors and the dashed lines show the

objective Bayesian posteriors.

(a) 2 States (b) 3 States

(c) 4 States (d) 5 States

Figure 10. Reported Posterior Belief

B.4 Structural Estimation Robustness Checks

We present two robustness checks for our structural estimation. First, we estimate

the parameters θ and λ for a prediction loss function that minimizes the average

quadratic mean difference between the expected state under the reported posterior

and predicted posterior.43

43The quadratic mean difference between reported posterior p̂(si;Ω, p0) and predicted posterior

p̂θ,λ(si;Ω, p0) is given by
(∑

ωj∈Ω ωj (p̂(ωj |si;Ω, p0)− p̂θ,λ(ωj |si;Ω, p0))
)2

.
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Table 14. Structural Estimation with Quadratic Mean Loss Function

θ 95% CI λ 95% CI

Parameter Estimates 0.39 (0.18, 0.92) 0.79 (0.68, 0.86)

Notes: Parameter estimates that minimize the average quadratic mean difference at the ag-

gregate level. Includes all information environments listed in Table 9, except for the 11-state

complexity; excludes wrong direction updates. The 95% confidence intervals are obtained

from 300 bootstrap samples.

Second, we estimate the parameters for information environments with a sym-

metric prior. Specifically, we exclude information environments with two states and

either a 30/70 or a 70/30 prior. The motivation behind this exercise stems from the

model prediction that the agent may update in the wrong direction under an asym-

metric prior (Prediction 4). In our main analysis, we drop wrong direction updates.

This could potentially lead to an underestimation of cognitive noise. By excluding

these information environments, we can drop wrong direction updates without intro-

ducing such a bias. The following table demonstrates that this exclusion does not

meaningfully affect the parameter estimates.

Table 15. Structural Estimation for Symmetric Priors

θ 95% CI λ 95% CI

Parameter Estimates 0.96 (0.88, 0.99) 0.69 (0.68, 0.71)

Notes: Parameter estimates that minimize average KL divergence at the aggregate level.

Includes all information environments with a symmetric prior listed in Table 9, except

for the 11-state complexity; excludes wrong direction updates. The 95% confidence in-

tervals are obtained from 300 bootstrap samples.
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C Experimental Instructions

The following shows the experimental instructions for the 3-state treatment. The

other complexity treatments are analogous.

Page 1:
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